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PREFACE 
 
It is a pleasure for our research group at the Department of Physics, Faculty of Natural 
Sciences at the Constantine the Philosopher University in Nitra to host the fifth meeting 
of the Thermophysical Society - Working Group of the Slovak Physical Society.  

The tradition of series of meetings has been iniciated by prof. Štefan Barta who 
organized the first meeting on January 22, 1996 at the Department of Physics, Faculty 
of Electrical Engineering and Information Technology at the Slovak University of 
Technology in Bratislava. Then Dr. Ľudovít Kubičár acted as the coordinator of the 
group and organized meetings at the Institute of Physics of the Slovak Academy of 
Sciences in Bratislava in the following three years – 1997, 1998 and 1999.  

The Thermophysics workshop has now been established as a periodical meeting of 
scientists working in the field of investigation of heat transfer and measurement of 
thermophysical and other transport properties of materials. 

Organizers of the last meeting were delighted to have heard an increased number of 
contributions – participants delivered 13 original lectures in which their authors 
presented current research progress and original results achieved at their home 
institutions. 

A special thank goes to MSc. student Ľubomír Veselý for his contribution in the 
preparation of the proceedings. 

The proceedings are also available in a digital form at the homepage of the 
Thermophysics – http://www.tpl.ukf.sk/thermophysics, or upon a request at the e-mail 
address vozar@uniag.sk. 
 
 
 
 

 Libor Vozár 



6 

 



7 

EFFECTIVE THERMAL DIFFUSIVITY IN 
POROUS MATERIALS 
 
Štefan Barta 
 
Department of Physics, Faculty of Electrical Engineering and Information Technology, 
Slovak University of Technology, Ilkovičova 3, SK-812 19 Bratislava, Slovakia  
Email: bartas@elf.stuba.sk 
 
Abstract  
 
The effective heat equation and the formula for the effective thermal diffusivity in a 
particulate and fibrous composite and porous materials are derived. 
 
Key words: effective thermal diffusivity, effective thermal conductivity, effective heat 
capacity 
 
1 Introduction  
 
The aim of this paper is to derive the effective heat equation and the relation for the 
effective thermal diffusivity of composite and porous materials. The composite 
materials on the submacroscopic level are heterogeneous ones, and therefore the heat 
equation can be written as 

( ) ( ) T,r.λ
t
Trγ ∇∇=

∂
∂ !!          (1) 

where ( ) ( ) ( ),rcrρrγ !!! =  is the heat capacity of the unit volume, ( )rρ !  is the density, 
( )rc p
!  is the specific heat capacity at the constant pressure, ( )rλ !  is the thermal 

conductivity, T  is the thermodynamic temperature. 
In (1) we assume that the individual components are isotropic. On the macroscopic level 
usually the composite is isotropic and homogeneous therefore, the effective heat 
equation reads 

p,p
p

p ΔTλ
t

T
γ =

∂
∂

         (2) 

where thermophysical parameters pγ  (effective heat capacity of the unit volume) and 

pλ  (effective thermal conductivity) do not depend on the space coordinates. The 
physical meaning of the parameters pλ  and pγ  will be given later. In this situation there 
arises the problem how the thermophysical parameters pλ  and pγ  depend on the 
volume fractions of the individual components. This problem will be solved in the next 
part of this paper. 
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2 Formal solution of the stochastic heat equation 
 
We arrange equation (1) in the form 

( ) ( )
( ) ( ) T,.ra
rγ
rγTr.a

t
T ∇∇+∇∇=

∂
∂ !

!

!
!        (3) 

where ( ) ( )
( )rγ
rλra !

!
! =  is the thermal diffusivity. Applying Laplace's transformation on 

equations (2) and (3) one obtains 

( ) ( ) ( )
( ) ( ) T.ra
rγ
rγT.rar0,TTp ~~~ ∇∇+∇∇=− !
!

!
!!  and  ( ) ppp TΔar0,TTp ~~ =− !   (4) 

where 
p

p
p γ

λ
a =  is the effective thermal diffusivity. In equations (4) we consider the 

same boundary conditions. Introducing the notation paaa −=∗  into equation (4) we 
obtain the equation 

( ) ( )
( )

( )
p

pppp
T

a
pΔT.

a
ra

rγ
rγ.

a
ra

a
pΔ ~~












−=












∇∇+∇∇+−

∗ !

!

!!

    (5) 

The formal solution of (5) is the following one 

( ) ( )
( )

( )
p

p

1

ppp
T

a
pΔ.

a
ra

rγ
rγ.

a
ra

a
pΔT ~~












−












∇∇+∇∇+−=

−∗ !

!

!!

    (6) 

We arrange  the inverse operator in (6) with the help of the following operator identity: 

[ ] ( ) { }∑ −=+
∞

=

−−

0n

1
0

n
10

n1
10 LLL1LL ˆˆˆˆˆ        (7) 

Using (7) we can write 

( ) ( )
( )

( ) ( ) ( ) ( )
( )

( )
∑













∇∇












∇∇+−−=












∇∇+∇∇+−

∞

=

−∗−∗

0n

n

p

1

pp

n
1

ppp
.

a
ra

rγ
rγ.

a
ra

a
pΔ1.

a
ra

rγ
rγ.

a
ra

a
pΔ

!

!

!!!

!

!!

( ) 1

pp
.

a
ra

a
pΔ

−∗












∇∇+−

!

        (8) 

Again using (7) one can write 



9 

( ) ( )∑












−=











∇∇+−∇

∞

=

∗−∗

0m

m

p

m
1

pp
,G.

a
aH1.

a
ra

a
pΔ ˆˆ !!!!

    (9) 

where   
1

pa
pΔH

−












−∇∇=

!̂!
…

1

pa
pΔG

−












−∇=

!̂
     (10) 

With the help of (6), (8) and (9) it may be shown that 

( ) ( ) ( )∑ ∑ ∇












−










 ∇












∑ −−=∇

∞

=

∞

=

∗∗∞

=0n 0m
p

m

p

m

n

p

m

p0m

mn T.
a
aH1.

a
a

γ
γG.

a
aH11T ~ˆˆˆˆ

!!!!!
  (11) 

2 Properties of the operators H
!̂!

 and Ĝ
!

 

The operator 
1

p
0 a

pΔL
−












−=ˆ is defined by the relation  

( ) ( ) ( )∫ ′′′−= rdrfrrGrfL0
!!!!!ˆ         (12) 

Applying operator 











−

pa
pΔ  on relation (12) one obtains 

( ) ( )∫ ′′−











−= rdrrG

a
pΔrf
p

!!!!        (13) 

If equation (13) has to be fullfiled it has to hold 

( ) ( )rrδrrG
a
pΔ
p

′−=′−











− !!!!        (14) 

For the infinite large surroundings the solution of equation (14) is expressed by the 
relation 

( ) pa
pr

e
r
1

4π
1rrG

−

−=′− !!         (15) 

in the three dimensional case and 

( ) 





′−−=′−

0
0 a

prrK
2π
1rrG !!!!        (16) 

in the two dimensional case. ( )xK0  is the Bessel function of second order [2]. 
The composite material on the submacroscopic level represents the random medium and 
therefore the macroscopic quantities can be obtained by averaging. For averaging it is 
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necessary to pass from the operator form to the integral form. That can be done by the 
following way: According to (10), and (12) one can write 

( ) ( ) ( ) ( ) ( )∫ ′′′−=∫ ′′′−∇∇= rdrfrrHrdrfrrGrfH !!!!!!!!!!!!!̂
    (17) 

and 

( ) ( ) ( ) ( )( )∫ ∫ ′′′−=′′′−∇= rdrfrrGrdrfrrGrfG !!!!!!!!!!!̂
     (18) 

For example the operator form G.
a
aH

m

p

ˆˆ !!!











 ∗
 can be rewritten in the integral form with 

the help of (17) and (18) as 

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ =′−−−−=










 ∗

−

∗∗∗
rrG.

a
ra

rrH...
a

ra
rrH.rd

a
ra

rrHG.
a
aH m

p

m
m1m

p

2
211

p

1
1

m

p

!!!!
!!!!!

!!!!!
!

!!!!!!! ˆˆ

( )r,rB ′= !!!
          (19) 

Using relation (19) one can write 

( ) ( ) ( )∑ ∑ ′=′=











−

∞

=

∞

=

∗

0m 0m
m

m

p

m r,rBr,rBG.
a
aH1 !!!!!!!!! ˆˆ

     (20) 

Introducing (20) into (11) one can write 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( )
∑ ∫ ∫ ′

′
′
′∇′′

′
′
′∇′′∫ ′

′
′
′∇′−=∇

∞

=
−

0n
n

p

n

n

n
n1n

p

2

2

2
211

p

1

1

1
1

n .rd
a
ra

rγ
rγ

r,rB...
a
ra

rγ
rγ

r,rB.rd
a
ra

rγ
rγ

r,rB1T !
!

!

!
!!

!

!

!
!!!

!

!

!
!!~

( ) 1n1np
p

r rdrT
a
pΔ

1n ++′ ′′











−

+

!!
! ˆ         (21) 

Due to the macroscopic character of measuring instrument an experimentalist measures 
the temperature averaged over large number of grains or fibres and, therefore 

,TTexp 〉〈= ~~  
where 〈〉  means the average value over the representative volume element. For 
averaging one needs to know all n-points correlation functions, what usually is 
unknown. Further it is evident that the heat equation becomes nonlocal. But all 
experimental methods for measuring thermophysical parameters are based on the 
solution of the local heat equation. In the further text we will assume that the heat 
transport in composite materials can be described by the local effective heat equation of 
the type (2). In this case it is sufficient to consider only the singular parts of the 

operators H
!̂!

 and Ĝ
!

. The singular parts of the operators H
!̂!

 and Ĝ
!

 are defined by the 
following way: 

( )∫ ∇∇=
→

RΩ0R

sing rdrGlimH !!!"~
   and    ( )∫ ∇=

→
RΩ0R

sing ,rdrGlimG !!!
   (22) 

where RΩ  is the region of the globular form in the three dimensional case. 
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( )∫ ∇∇=
→

RS0R

sing rdrGlimH !!!!̂
   and   ( ) ,rdrGG

RS

sing ∫ ∇= !!!̂
    (23) 

where RS is the region of circular form in the two dimensional case. Using (15),(16) and  
the Gauss’s theorem one can write 

( )
∫ ==

→
RΣ0R

sing I
3
1

dR
RdG

R
RSdlimH

!!
!

!!!
…and   ( ) ,0RGSdlimG

RΣ0R

sing ∫ ==
→

!#
  (24) 

in the three dimensional case. I
!!

 is the unit tensor. In the two dimensional case: 

( ) ( )∫ ∫ =









+==

→→

2π

0 p
1

p

22

0R0R

sing

a
pR.K.

a
pjjαsiniiαcosRdαlim

dR
RdG

R
RsdlimH

!!!!
!

!!!̂
 

( )jjii
2
1 !!!!

+=    and   ( ) ( )∫ ∫ ==∇=
→→

RS 0R0R

sing 0,RGsdlimrdrGlimG !!!!̂
   (25) 

where we used the asymptotical form of ( )
x
1xK1 ≈  [2].  

 
3 Effective thermal diffusivity 
 

Considering only the singular parts of the operators H
#̂!

 and Ĝ
!

 relation (11) can be 
written in the close form 

( ) ( )∑ ∑ ∇
+

=∇












−=∇












−≈∇
∞

=

∞

= ∗

∗∗

0n 0n
p

p

p

n

p

n
p

n

p

singn T

a
ag1

1T.
a
aIg1T.

a
aH1T ~~~ˆ~ !!!!

 (26) 

where 
3
1g =  in the three dimensional case and 

2
1g =  in the two dimensional case. 

We would obtain this result if we neglected the second term on the right side of 
equation (4). Averaging (26) one obtains 

p

p

exp T

a
ag1

1TT ~~~ 〉∇
+

〈=∇=〉∇〈
∗

       (27) 

If we put expp TT ~~ =  then it follows immediatelly from (26)  

1

a
ag1

1

p

=〉
+

〈
∗

         (28) 

It is easy to show that from (28) it follows also 

0

a
ag1

a

p

=〉
+

〈
∗

∗
         (29) 
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Averaging (4) and neglecting the second term on the right side of equation (4) we obtain 

( ) ( ) 〉∇〈∇+〉〈=〉∇〈∇=−〉〈 ∗ Ta.TΔaTra.r0,TTp p
~~~ !!     (30) 

Considering (26) and (27) equation (28) transforms to the effective heat equation 

( ) 〉〈=−〉〈 TΔar0,TTp p
~~ !    or   〉〈=

∂
〉∂〈 TΔa

t
T

p      (31) 

For the n-components composite  equation (29) has the form 

∑ =
−

+

−

=

n

1n

eff

effi

effi
i 0

a
aa

g1

aa
c         (32) 

where ic  is the volume fraction of thi  component. In (32)  instead of pa  we used the 

effa  which we call the effective thermal diffusivity.  

In the stationary heat transport the heat equation is the following one 

( ) 0Tr.λ =∇∇ !           (33) 

Proceeding similarly as in the preceeding case we obtain the following equation for the 
calculation of the effective thermal conductivity 

∑ =
−

+

−

=

n

1i

eff

effi

effi
i 0

λ
λλ

g1

λλ
c         (34) 

Now we define the effective heat capacity of the unit volume as 

eff

eff
eff a

λ
γ =           (36) 

Introducing (35) into (30) one obtains 

.TΔλ
t
Tγ effeff 〉〈=

∂
〉∂〈          (37) 

This is the effective heat equation for composite materials. 
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EFFECTIVE THERMAL CONDUCTIVITY OF 
FIBROUS COMPOSITE MATERIALS 
 
Štefan Barta 
 
Department of Physics, Faculty of Electrical Engineering and Information Technology, 
Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovak Republic 
 
Abstract  
 
The formula for the effective thermal conductivity tensor in fibrous composite materials 
is derived. 
 
Keywords: fibrous composite, effective thermal conductivity, average field 
approximation 
 
1 Introduction 
 
The aim of this paper is to derive the relation for the effective thermal conductivity 
tensor for fibrous composite material. Fibrous material is regarded as that one consisting 
of fibres, possibly in a matrix. Generally the composite material on the submacroscopic 
level is heterogeneous because it is composed of some components which on the one 
hand are spacially separated from each other and on the other hand are randomly 
distributed over all sample. Due to this randomnes the physical quantities of composite 
on the submacroscopic level are not only dependent on space coordinates but they are 
also the random quantities. However, on the macroscopic level composite usually is 
homogeneous and may be characterized by the effective parameters which are 
independent on space coordinates. For an experimentalist it is very important to know in 
which cases the composite material on the macroscopic level may be characterized by 
effective parameters because only in these cases it is justificable to use the standard 
method for their measurement. The necessary and sufficient conditions for using 
effective parameters are discussed in Beran's work [1]. In the further text we will 
assume that all conditions for using the effective parameters are fulfilled. In this 
situation, we meet with a problem of the determination how the effective parameters 
depend on the structure of composite on the submacroscopic level and also on the 
quantities, which characterize individual components of composite material. This 
information is very important especially for technologist. Knowing the relation for the 
effective parameters it is possible to manufacture composite material whith the 
prescribed values of the parameters ("tailoring" of materials). The statistics of the 
structure of composite on the submacroscopic level is very often unknown and only the 
volume fractions are known from the manufacturing process. If the composite on the 
macroscopic level is a homogeneous one then we will use the Assumption: The 
probability of the occupation of certain place with the ith component is equal to its 
volume fraction. The derivation of the relation for effective parameter is a very difficult 
problem. When solving this problem we have to face two difficulties. The first one is 
connected with the necessity of becoming familiar with the statistics of the structure of 
the composite on the submacroscopic level, which as a rule is unknown. The second one 
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is connected with the mathematical difficultities of exact calculation of effective 
parameters and, therefore one is obliged to use approximate methods. One of those 
approximate method is an average field approximation method, which will be used in 
this article. 
 
2 Average field approximation 
 
The average field approximation method is based on the idea that a randomly chosen 
isotropic fibre of circular form characterized by the thermal conductivity λ  is 
submerged into an unlimited effective medium, which is characterized by the effective 
thermal conductivity effλ . We will consider that all fibres are parallel and go through 
the whole sample. The fibres are covered with the surface layer characterized by the 
thermal conductivity mλ . The average field approximation method does not require 
knowlege of the n-point correlation function, but only the local distribution function. 
This fact is advantageous, but it represents only an approximate method because it uses 
incomplete information about the statistics of the structure of the composite on the 
submacroscopic level.  
The fibrous composite on the macroscopic level is anisotropic. The effective thermal 
conductivity along the fibres is other than that one perpendicular to the fibres. The 
effective thermal conductivity along the fibres can be derived easily because it 
represents the parallel connected thermal conductivites. If we consider the binary 
fibrous composite where the fibres are submerged into a matrix, which is characterized 
by the thermal conductivity 2λ then 

S
λSλSλS

λ 22mm11
effalong

++
=        (1) 

where  2
11 πRS =  is the area of the cross-section of fibre, 

            1R  is the radius of the cross-section of fibre, 
            ( )2

1
2
2m RRπS −=  is the area of the cross-section of the surface layer of fibre, 

            2R  is the radius of the cross-section of fibre and his surface layer, 
            ,SSSS m12 −−=  
            S  is the area of the cross-section of the sample. 
The calculation of the effective thermal conductivity perpendicular to the fibres differs 
from the standard method because the fibres are covered by the surface layer. The 
calculation will be done by two steps. At first step we will consider the fibre of the 
radius 2R  which consists of the matrix material and is put in the effective medium of 
the thermal conductivity effλ . In the stationary case the heat equation has the following 
form 

0,ΔT =           (2) 

where T  is the temperature. The solution of equation (2) reads 

( ) r.E-BT 0
I !!

=       in the region I (fibre)       (3) 
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( )
200

II

r
r.EAr.E-T
!!!!

+=      in the region II (effective medium)   (4) 

The constants  A and B are determined from the boundary conditions: 
At r=R2 

( )( ) ( )( )2
II

2
I RTRT =           (5) 

( ) ( )
0

II
eff0

I
2 r.Tλr.Tλ !! ∇−=∇−         (6) 

where 0r
!  is the unit vector parallel to .r!  The condition (6) expresses the equality of the 

heat current densities in the radial direction. From the boundary conditions (5) and (6) it 
follows 

eff

eff2

λ
λλ

2
11

1B
−

+
=          (7) 

and 

( )
0

eff

eff2

I E

λ
λλ

2
11

1T
!

−
+

−=∇         (8) 

In the second step we will consider the fibre with the surface layer, which is put in the 
effective medium. In this case we have three regions. In the first region there is the fibre 
with the thermal conductivity 1λ  and the radius 1R . In the second region there is the 
surface layer with the thermal conductivity mλ  and the third region is the effective 
medium. The solution of heat equation (2) is the following 

In region I 
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In region II 
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In region III 
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The constants DC,B,  and A  are determined from the boundary conditions: 
At 1Rr =  

( )( ) ( )( )1
II

1
I RTRT =          (12) 



16 

( )( ) ( )( ) 01
II

m01
I

1 r.RTλr.RTλ !! ∇−=∇−       (13) 
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Introducing (9),(10) and (11) into (12),(13),(14) and (15) one obtains 
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The heat current density on the semicircle with the radius 2R  is expressed by the 
relation 
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We choose the -x axis in the direction of .E0
!

 The average heat current density in the 

direction of 0E
!

 on the semicircle with the radius 2R  has the following form: 
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The heat current density at 1Rr =  in the region I is expressed by the relation 
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where we used the first relation in (17). We see that at the boundary 1Rr =  the heat 
current densities in both sides are equal. From (16) and (17) it follows 
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where 
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Introducing (20) into (19) one obtains 
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From (21) it follows 
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It is obvious that ∗
1λ  is the thermal conductivity of fibre with the surface layer. 

According to (8) and (22) and the Assumption the configurational average value of 
( )( )〉〈∇ 2
II RT  is defined by the relation 
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where 1c  is the area fraction of fibres with surface layers, 
           2c is the area fraction of matrix. 
Now we choose 0c ET

!
=〉∇〈  and from that assumption it follows 
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The configurational average of ( )〉〈 2Rq!  can be calculated from the relation 
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Due to the macroscopic character of measuring the experimentalist measures the 
temperature averaged over large number of fibres and, therefore expc TT =〉〈 , where 〈〉  
means the average value over the representative volume element. From (24) it follows 
immediatelly 
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and therefore 

( ) ceffc2 TλRq 〉∇〈−=〉〉〈〈 !         (27) 

Relation (27) expresses the Fourrier's law for the fibrous composite perpendicular to 
fibres. The effective thermal conductivity can be calculated from (24) or from (27) 
according to the relation 
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The effective thermal conductivity tensor according to relations (1) and (28) is 
expressed by the relation 

( ) kkλjjiiλλ effalongeffeff

!!!!!!
++=        (29) 

The above introduced method can be used also for fibres with more layers than one. The 
application of fibres in composite is the cause of the mechanical reinforcement of 
composite. But on the other hand due to the difference of the thermal expansibility of 
fibre and matrix there arises on the boundary between the fibre and matrix a thermal 
stress which causes the failure in a material. The problem is how aptly to choose the 
surface layer to prevent the failure in composite material. 
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Abstract 
 
Thermal conductivity λ, water vapor permeability δ and liquid moisture diffusivity κ of 
cement mortar are measured on four types of samples, unloaded, mechanically loaded to 
90% of compressive strength, thermally loaded by the 800oC exposure for two hours, 
and loaded both mechanically and thermally. The values of κ are found to depend on the 
way of loading in a very significant way, the maximum differences compared to the 
unloaded samples being as high as 3 orders of magnitude. On the other hand, the values 
of δ increase by only about 40% compared to the basic unloaded material. The thermal 
conductivity in the high temperature region is found to be affected by both mechanical 
and thermal load in a significant way. Two competing mechanisms, namely the increase 
of the total pore volume and the intensification of convective heat transfer, can result in 
both positive and negative changes of thermal conductivity compared to the basic 
samples not exposed to any load.  
 
Key words: thermal conductivity, moisture diffusivity, water vapor permeability, high 
temperature exposure, mechanical load 
 
1 Introduction  
 
For a long time, hygric and thermal properties of building materials were considered in 
the form of single room-temperature values. Later, also their dependence on 
temperature and moisture content was taken into account. However, some weakly 
studied areas remained until now. One of them is the in influence of mechanical load on 
the hygric and thermal properties of materials used for load bearing structures which are 
often a part of building envelope. Another one is the in influence of high temperatures 
both at the moment of their application and after thermal load removal which is an 
interesting topic for instance in fire engineering. In this paper, the effect of mechanical 
and thermal load on the thermal conductivity, moisture diffusivity and water vapor 
permeability of cement mortar is studied.  
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2 Methods for measuring the hygric and thermal properties 
 
For the determination of moisture diffusivity κ we employed a simple method based on 
the assumption that κ can be considered as piecewise constant with respect to the 
moisture density [1]. The measuring method for determination of the water vapor 
permeability δ is described in [2], in more details. The measuring apparatus consists of 
two airtight glass chambers separated by a plate-type specimen of the measured 
material. In the first chamber, a state near to 100% relative humidity is kept (achieved 
with the help of a cup of water), while in the second one there is a state close to 0% 
relative humidity (set up using some absorption material, such as silica gel). The 
changes in the mass of water in the cup, ∆mw, and of the silica gel, ∆ma, are measured 
in dependence on time. For high temperature measurements of thermal conductivity, we 
used a double integration method based on the analysis of the temperature field [3]. 
 
3 Material samples 
 
In the experimental measurements, we studied the samples of cement mortar as a typical 
representant of cement composites. The composition for one charge was the following: 
Portland cement ENV 197 - 1 CEM I 42.5 R (Kraluv Dvur, CZ) - 450 g, natural quartz 
sand with continuous granulometry I, II, III (the total screen residue on 1.6 mm 2%, on 
1.0 mm 35%, on 0.50 mm 66%, on 0.16 mm 85%, on 0.08 mm 99.3%) - 1350 g, water - 
225 g. 

The mortar was prepared by mixing and compacting using mixing machine and 
vibrator. The samples for measurements of hygric parameters had a cylindrical shape, 
with the diameter of 105 mm and the height of 20 mm. 

The samples were left in moulds for the first 24 hours in a high relative humidity 
environment under wetted cloth. After mould removal, the time remaining to 28 days 
spent the samples in 20oC water and then they were put in protected external 
environment (a metal-sheet shed) with the relative humidity approximately 65%. After 
28 days, the compressive strength was determined on selected samples (57.4 MPa). The 
density of dry material was found to be 2130 kg/m3, the moisture content at saturation 
8%kg/kg. 
 
4 Experimental results 
 
In the experimental measurements of hygric parameters, four deferent types of 
specimens of cement mortar were analyzed: 
1) specimen not exposed to any load (we will denote it NL in what follows), 
2) specimen exposed to a gradual temperature increase up to 800oC during two hours 

and then left for another 2 hours at 800oC but without previous mechanical load 
(TL), 

3) specimen exposed to mechanical load of 90% of compressive strength but without 
thermal load (ML), 

4) specimen exposed first to mechanical load of 90% of compressive strength, then to a 
gradual temperature increase up to 800 oC during two hours and finally left for 
another 2 hours at 800oC (MTL). Always three samples of each type were tested. 



21 

Table 1 Hygric parameters of cement mortar 
 

Sample κ(m2s-1) δ(s) 
NL 9,7.10-9 3,34.10-12 
ML 9,0.10-8 3,18.10-12 
TL 1,0.10-5 4,03.10-12 

MTL 1,3.10-6 4,56.10-12 
 
 

The experimental results of measurements of hygric parameters are summarized in 
Table 1. Apparently, the in influences of thermal and mechanical load were more 
pronounced for moisture diffusivity κ than for water vapor permeability δ. While the 
values of δ increased only by 40% in maximum, the values of κ increased up to 3 orders 
of magnitude. 

The effect of mechanical load was significant for κ only where it has led to about one 
order of magnitude increase, the differences between NL and ML in δ were within the 
errorbar of experimental measurements. The thermal load appeared as the most 
important factor affecting the values of κ, and resulted in about 3 orders of magnitude 
difference compared to NL. On the other hand, the in influence of thermal load on δ was 
relatively small, only about 20% increase was observed in comparison to NL samples. 
The effect of the combination of mechanical and thermal load was for κ less significant 
than that of thermal load but more important than mechanical load itself, the observed 
increase in κ was about 2 orders of magnitude. The 10% increase of δ for MTL 
compared to TL is somewhere on the edge of the errorbar of the experimental method 
for δ determination, therefore we cannot be sure whether this difference is really 
significant. 

In the high temperature measurements of thermal conductivity, six different types 
of specimens of cement mortar (five specimens in each group) were analyzed: 1) 
specimen not exposed to any load (we will denote it NL in what follows), 2) specimen 
exposed to a gradual temperature increase up to 800oC during two hours and then left 
for another 2 hours at 800oC but without previous mechanical load (TL), 3) specimen 
exposed suddenly to the temperature of 800oC (i.e. to a thermal shock) and then left for 
2 hours at that temperature, again without previous mechanical loading (TSL), 4) 
specimen exposed to mechanical load of 90% of compressive strength but without 
thermal load (ML), 5) specimen exposed first to mechanical load of 90% of 
compressive strength, then to a gradual temperature increase up to 800oC during two 
hours and finally left for another 2 hours at 800oC (MTL), 6) specimen exposed first to 
mechanical load of 90% of compressive strength, then suddenly to the temperature of 
800oC (i.e. to a thermal shock) and finally left for 2 hours at that temperature (MTSL). 
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Fig. 1 Thermal conductivity vs. temperature relation of cement mortar, depending 
on the thermal and mechanical load 

 
 

In Fig. 1, three groups of λ(T) curves can be distinguished. Highest λ values 
achieved the TL and TSL samples, the lowest values exhibited ML samples, and the 
remaining MTL, MTSL and NL samples formed a third group in between. As the 
measured results have shown a reproducibility better than 10% which can be considered 
as very good, only characteristic results were chosen for the presentation in Fig. 1. 
According to the analysis which was done before [3], the overall accuracy of the 
determination of the thermal conductivity using the double integration method is ± 15%. 
The differences between the particular specimens within each group were smaller than 
those between the groups, therefore it can be concluded that the differences between the 
groups are outside the errorbar of our measurements. 
 
5 Discussion 
 
In order to analyze the reasons for the remarkable changes in the hygric and thermal 
parameters induced by the mechanical and thermal load we used scanning electron 
microscopy (SEM) and mercury porosimetry (MP). 

Scanning electron microscope Jeol JXA-733 was employed to study the structural 
changes in the surface region of the samples induced by the thermal and mechanical 
load. A typical sample mechanically loaded to 90% of compressive strength exhibited 
cracks approximately 1-2 µm wide. A similar view we could see for images of 
thermally loaded samples, only the cracks were wider, up to 5 µm. 

Porosimetric measurements were performed using the mercury porosimeter 
AutoPore 200 - Micromeritics on four types of specimens, NL, ML, MTL, TL, using 
the notation introduced before. Only minor changes in global parameters appeared, 
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when mechanical load was applied, for instance the total intrusion volume Vp increased 
only by 10% and the median pore radius by volume rV by 30% compared to the 
reference specimen NL. On the other hand, thermal load exhibited much more 
pronounced effects. The median pore radius increased 17 times compared to the 
reference specimen NL, Vp increased by almost 100% and even ρ decreased by 10%. 
The combination of mechanical and thermal load (MTL) has led to very similar results 
as in the case when only thermal load (TL) was applied, Vp was almost the same (i.e., 
within the errorbar of experimental measurements). However, the median pore radius 
for MTL decreased two and a half times compared to TL and the total pore area 
increased almost two times. A comparison of differential distribution functions of the 
pore volume by pore radius for the studied specimens has shown that mechanical load 
(ML) has led to certain increase of pore volume in the region 0.3 µm - 2 µm compared 
to the reference specimen NL. This is in a qualitative agreement with the results of 
scanning electron microscopy measurements which revealed for ML specimens an 
appearance of not very numerous cracks 1-2 µm in width. The thermally loaded 
specimen TL exhibited a very significant increase of pore volume in the region 
0.1 µm - 5 µm compared to NL but a similarly high decrease was observed in the region 
of smaller pores, r < 0,1µm. The combination of thermal and mechanical load (MTL) 
resulted in significantly higher volume of smaller pores with r < 0,1µm compared to TL 
but still lower than for NL, the amount of bigger pores was for MTL very similar to TL. 
The increase of amount of bigger pores in the µm region for thermally loaded 
specimens was in a qualitative agreement with our observations and SEM 
measurements, we could see numerous visible cracks in the material after being heated 
to 800oC and cooled again.  
 
6 Conclusions 
 
Both mechanical load of 90% of the compressive strength, and the thermal load of 
800oC exposure for 2 hours, and their combination as well, were found to be very 
significant factors affecting the moisture diffusivity κ and thermal conductivity λ. The 
main reason for the observed differences in the values of κ and λ for the samples loaded 
in deferent ways was probably the appearance of cracks up to 5µm wide which were 
mostly well visible. In the case of thermal conductivity, the most probable reason for 
both positive and negative changes compared to the basic samples not exposed to any 
load were two competing mechanisms, namely the increase of the total pore volume and 
the intensification of convective heat transfer. On the other and, the values of water 
vapor permeability δ were affected in much smaller extent than the changes of κ what is 
related to the fact that water vapor transfer in concrete s much easier than water transfer 
in normal conditions.  
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Abstract 
 
There are presented our results with the frigichip Melcor Cp 1-127-05L as the heat flow 
measuring sensor. The results are very promising for the possible future industrial 
applications.  

The value of the thermal conductivity coefficient is crucial in these measurements.  
So great amount of work is devoted to its determination. The obtained results are 
discussed and compared. We have studied the problem of the frigichip efficiency as a 
heat power machine too. These results are compared with the theoretical ones.  
 
Key words: heat flow measurement, frigichips, thermal conductivity 
 
1 Introduction 
 
The saved up energy is the cheapest energy. To be able to save up the energy, we should 
to be able to measure its used amount. In some special cases it is not very difficult. But 
in the case of the thermal energy there are many problems associated especially with the 
heat losses in the parts of the measuring instrument. The heat is everywhere around us.  
Further as we see the problem of the saving up the thermal energy as the problem for 
the next century, we decided to realise the measuring device which will be able to give 
us not only the precise values but the real time values too. And not in the steady state 
only. 

Of course, today, there is possible to buy a huge variety of devices which are able to 
measure the heat flow. At least they are putting on the appearance of such kind of 
measurements. With respect to the physical principles of the measurements they are 
usually a cat in a sac for the end user. We not only strongly disagree with this, but also 
we wish to go further. We wish to see inside the physical principles of such a device and 
we wish to be able to use these principles in our scientific goals and to be able 
technically to improve such kind of a device. Therefore we decided to realise our own 
research and our own development. We have chosen the frigichips as the base of our 
effort.  

In our research we have obtained some very considerable results. See for example 
Bahýl and Marčok 1995, Kotrík 1997 and Dubnička 1999. Of course we are not the first 
who intend to use the frigichip as the heat flow measuring device. See for example the 
paper of  Dittmann and Schneider 1992. Even iff this paper is not physically quite clear 
it has encouraged us in our research to develope high quality, easy operate and cheep 
device for the heat flow measurements.  
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We think that our present paper is also one small step toward this goal too. Mainly if 
we can see the prevalent interest to use the Peltier and Seebeck phenomenon 
predominantly in the temperature controll sytstems. As the problems of the so called 
thermoelectrical convertors is well described in the paper Heřman at all. 1984 we give 
here the basic design of the thermocouple, the ground elemnt of the thermoelectrical 
convertor device. 
 

Figure 1. The basic design of the thermocouple 
 
The Peltier and Seebeck phenomena we will not described here as they are well 
described in any better physical textbook. 
 
2 Experiments 
 
We have realised the set of experiments in our laboratories in which we have been 
concentrated on the problem of calibration of our converters i.e. we should to determine 
the function )(Pfq =! , where P is the power of the generated electric current. We have 
devoted great amount of interest to determination of the efficiency of the frigichip as a 
hot engine. I.e. we paid our attention to the quite opposite event of the frigichip as it is 
in common use we decided experimentally determined the value of the efficiency 

Q
IR 2.=η , where R is the electric resistance (see Fig. 4) and I is the electric circuit 

generated with the heat Q. 
All our experiments we have realised in the steady state conditions and we have used 

quite classical experimental arrangement. The basic sketch of our experimental device 
arrangement is given on the figure 2. The heat flow lone have been represented with the 
set of aluminium joists between which there have been placed the frigichips and the 
control thermocouples. The calorimeter loaded with melting ice has been used as a heat 
sink.   
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The temperatures have been measured in 8 different places. This enables us to 
determine the heat flow losses in the different Al joists on the way of heat from the 
room conditions to the heat sink in the calorimeter. For the reference temperature point 
we have used the calorimeter with zero Celsius degree.    

Our measuring device is connected with the personal computer and it is full 
automated. The measured values have been gathered in every 30 seconds. The scheme 
of our computer aided working place is in the figure 3. The scheme of the Peltier 
element circuit is in the figure 4.  

The determination of the value of the loading resistor has been very important task of 
our work. The results of our measurements are given in the figure 5. It is easy to see that 
we get the maximal performance of our “ converters” we got for the loading resistor  
RLR = 3.9Ω. The resistance of ampermeter is RA = 10.5 Ω. In common we get R = 14.4 
Ω. As we can see from the figure 5, the dependence of the Peltier element performance 
on the loading resistor has well defined maximum.  
 

 

Figure 2. The measuring device scheme with the heat flow line. 
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Figure 3. The scheme of the data gathering computer aided system. 

 
 

Figure 4. The Peltier element circuit connection. 
 
Toward fig. 3:                                                             Toward fig. 4: 
T1~T2 – thermoelements                                            TEM(PC) – thermoelectric changer  
U1~U4 – terminal on measurement of the voltage                       - Peltier element 
P.M.M – switch of the measuring spoil                      V – voltmeter 
VM – voltmeter                                                           A – ampere-meter 
PP – personal computer                                               Rz – loading resistance 
 

 
Figure 5. The diagram of the electric power dependence upon the loading resistance. 

The dependence of the electric pow er on the size of 
the load resistance.
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3 Results 
 

We have realised 12 independent experiments in which we have been looking for the 
dependence of the performance of the studied Peltier element (PE) upon the heat 
flowing through it.  

As it is in the common use first we have determined the function )( tfU ∆=  in 
which U is the PE voltage and ∆t is the temperature difference between the PE plates. 
We have obtained the equation  

])[0137.00036.0().006.0022.0( VtU ±+∆±=      (1) 

The results from the experiment No. 6 are given in the figure 6. 
 

 

 
Figure 6. The voltage – temperature difference dependence for the studied PE. 

 
   

As the q value in the regression equation (1) equals 0.0036 ± 0.0137 and from this 
we can conclude that this value is statistically equal to zero we can take our results as 
the precise one. (The value of q should be zero from the theoretical point of view.) 

The next proof of our preciseness we can get form the thermal conductivity 
coefficient λ. According to our computations and measurements we have obtained the 
value  

].[65.099.1 11 −−±= KWmPEλ         (2) 

As it is impossible to find this value in the scientific papers, we ask for it the Melcor 
Peltier Corporation directly. Via E-mail we have obtained the next form 

)(*5.0;4131.02;7.2771;0.626050:
],.[10).*2*10( 1162

COLDHOTAVE

AVEAVE

TTTkkkwhere
KWcmTkTkkk

−==−==
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. (3) 

After substitution of our measured values into the form (3) we obtained 

].[003.0712.1 11 −−±= KWmMPC
PEλ        (4) 
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We take this as very well agreement with our measurements and as the direct proof 
of our correctness. 

The efficiency of the PE is in comparison with their efficiency in the cooling systems 
very low. In the conditions of the loading resistance 14.4 Ω we have obtained the next 
value  

55 10.1.4310.5.93 −− ±=PEη .        (5) 

This value we do not think as a definite one, because of the fact that from our theoretical 
computations in accordance with Heřmann at all. 1984 we obtained the value 

55 10.24910.613 −− ±=OPTη .        (6) 

Our experimental device did not allowed us to measure under the conditions of rather 
great amount of the heat flow. So we decided to install our measuring device into the 
wood drying kiln. Our results are depicted in the figure 7. We can conclude that the 
electric power performance of the PE is the linear function of the heat flow through the 
Peltier element. 

 
Figure 7. The peltier element performance for the large size of the heat flow values. 

  
Of course we should to take these our results as a preliminary one because of rather 

great dispersion of the measurements. 
 
4 Discussion 
 

As it has been mentioned in the beginning of the present paper we are dealing with 
the possibility to use the PE as the direct heat flow measuring device rather long time. It 
is quite sure that PE is possible to use as the basic element in the heat flow measuring 
device. We think that it will not take a long time till we will be able to meet it in the 
technical practice. More we regard them much more precise as the classical ones, fore 
example the Schmidt carpets. So if we wish fully utilise their sensitivity, we need more 
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precise experimental device and we should to realise more experiments. But the till now 
done serve as the clear proof that we are on the true way. 

From the point of view of the practice it is important to solve the question of the so 
called self calibrating system for the PE connected as the heat flow measuring device i. 
e. in the sense of the Seebeck phenomenon. Normally the PE is used as the heat source 
or sink part of many modern systems i. e. in the sense of the Peltier phenomenon. The 
calibrating of the heat flow measuring PE is possible in the obvious way, by usage of 
the well heat conducting externally heated thin plates. We suppose that such an 
arrangement will allow us to determine the straight line from the figure 7 in much more 
uniformly distributed data. 

The thermal contact of the PE with the measured object plays very important role in 
the heat flow measurements. Other way we can introduce rather large systematic errors 
in the results. So it is inevitable to use the thin layer of the thermopast to be sure that the 
thermal contact are well. Of course such kind of past have been used in our experiments 
too.  
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Abstract 
 
The apparent thermal conductivity of the lightweight fibrous insulation materials 
comprehends intensive radiative heat transfer. Under certain boundary conditions also 
natural convection can play the role. The results of apparent thermal conductivity 
measurement of the low density mineral wool confirmed the presence of convection at 
the Rayleigh values significantly lower than 40. This fact was caused by the permeable 
boundary conditions during the experiment. 
 
Key words: thermal conductivity, natural convection, long-wave radiation, fibrous 
insulation material, heat and air transfer 
 
1 Introduction 
 
In fibrous insulation materials three modes of heat transfer can be distinguished: 
conduction, longwave radiation and convection. In the low density fibrous insulating 
materials the heat transfer by longwave radiation and natural convection can play 
significant role at certain boundary conditions. For such a cases the apparent thermal 
conductivity of the material (comprehending longwave radiation, conduction and 
natural convection) varies with the temperature of the material as well as with the 
boundary conditions. With the aim to analyse mutual interaction between particular heat 
transfer modes the measurements of the heat flows and temperatures in horizontal 
lightweight mineral wool insulation layer were made. 
 
2 Experimental results 
 
The mineral wool used in the experiment had the density ρ = 9,8 kg/m3, the porosity  
ψ = 0,996 and the mean fibre diameter D = 5.10-6 m. The measurements were done in 
the guarded hot plate apparatus with horizontal plates and upwardly oriented heat flow 
(Fig. 1). The sample consisted of mineral wool flocks layer filled in the test frame with 
internal dimensions of 0,5 x 0,5 m. The height of the frame 0.1 m has determined 
thickness of the sample. Two sets of the measurements were done. With the aim to 
evaluate the temperature dependence of the thermal conductivity due to longwave



radiation in the actual experimental conditions, the effective thermal conductivity of 
mineral wool was determined for variable mean temperatures at small surface 
temperature differences (from 3,74 to 4,34° C) in the first set of the measurements. The 
results are shown in Fig. 2.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 1  The schematic description of the measurement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 2  The dependence of the measured thermal conductivity of the mineral wool on its 
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average temperature compared with  the theoretical relation according to [1], [2]. 
 
The second set of the measurements has been done at variable surface temperature 
differences (from 5 to 60 °C) and the same mean temperature of the sample (20°C) 
simultaneously. The results of these measurements are shown in Fig. 3. The  
measurements confirmed significant dependence of the measured thermal conductivity 
on the mean temperature of the sample as well as the dependence of the thermal 
conductivity on the surface temperature difference.  
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Fig 3  The thermal conductivity of the mineral wool measured for various surface 
temperature differences 

 
3   Total heat transfer in fibrous materials 
 
3.1 Effective thermal conductivity 
 
In the fibrous materials different types of heat transfer are present: conduction in solid 
phase constituting the insulation, radiation in the material and heat transfer in gas 
confined the insulation. The total effective thermal conductivity of a fibrous material 
may be expressed as: 

λeff = λG + λF + λR         (1) 

where λG is the effective thermal conductivity due to conduction in gas which results 
from direct thermal conduction in the gas and conduction in gas and fibres alternatingly. 
The effective thermal conductivity due to conduction in solids λF results from direct 
conduction in fibers and fiber contacts. The influence of radiation on the effective 
thermal conductivity of the fibrous material is denoted by λR [1]. 
The effective thermal conductivity (conductive and radiative heat transfer) dependence 
on temperature “t” can be expressed by the linear relation:   

λeff = a + b . t          (2) 
where a and b are the regression coefficients obtained from the measurements (Fig. 2). 
  
3.2 Apparent thermal conductivity 
 
Natural convection in horizontal porous materials occurs if the lower boundary 
temperature is higher than the upper boundary temperature. The air is stable when the 
upper surface has a higher temperature than the lower surface. The heat transfer in a 
fibrous material is described by the following non-dimensional parameters: Modified 
Rayleigh number:  

Ra = ρ.c.g.β.Bo.H.(tw - tc)/(η.λeff)       (3) 
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where ρ(t) is density of air[kg/m3], c is specific heat of air [J/kg.K], g is gravitational 
acceleration [m/s2], β is coefficient of thermal expansion [1/K], B0 is permeability [m2], 
H is thickness [m], η(t) is dynamic viscosity of air [Pa.s], tw, tc are temperatures of the 
warm and cold surface respectively[°C], λeff(t) is effective thermal conductivity 
[W/m.K] and Nusselt Number:  

Nu = λap/λeff          (4) 

where λap(t) is apparent thermal conductivity at the presence of natural convection 
[W/m.K].  
The relation between Nusselt and Rayleigh numbers can be expressed as follows:  

Nu=f(Ra, geometry, boundary conditions)      (5) 

A critical porous Rayleigh number is found when significant natural convection occurs 
(Nu > 1). This number was found to be 40 for a impermeable upper boundary while it 
decreases to approximately 20 for a porous layer with a permeable upper surface. In the 
case of upper and lower permeable boundaries or non-isothermal boundaries Ra can 
reach the values higher than zero (Tab.1) [3] . 
 

Table 1. Values of the critical Rayleigh number for various boundary conditions [3] 
 

lower boundary upper boundary lower boundary upper boundary Racritical 

impermeable impermeable conducting conducting 39.48 
impermeable impermeable conducting insulating 27.10 
impermeable impermeable insulating insulating 12 
impermeable free conducting conducting 27.10 
impermeable free insulating conducting 17.65 
impermeable free conducting insulating 9.87 
impermeable free insulating insulating 3 

free free conducting conducting 12 
free free conducting insulating 3 
free free insulating insulating 0 

 
4  Discussion 
 
The estimated increase of the effective thermal conductivity with the average 
temperature (Fig. 2) caused by longwave radiation is in the agreement with calculation 
according to the model of the heat transfer in fibrous material [1], [2]. 
The increase of the apparent thermal conductivity caused by the increase of the surface 
temperature difference begins already at low temperature differences. The effect of the 
natural convection expressed by the relation between Nusselt number and modified 
Rayleigh number occurs already at Ra = 3 which is the value significantly lower than 
the critical value 40 for impermeable upper boundary or 20 for permeable upper 
boundary. The obtained value of critical Rayleigh number corresponds to the boundary 
conditions defined by both upper and lower permeable boundaries (Tab. 1). The results 
of the measurements were compared with the results of the measurements by 



37 

[4] for fibrous insulation material with comparable properties and under the same 
boundary conditions and are presented in Fig. 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4  Measured values of Nusselt number versus modified Rayleigh number 
 
The explanation of the existance of the permeable boundaries in the case of the 

lightweight loose-fill mineral wool follows from the character of its structure. The 
maximum known permeability of the mineral wools of the density lower than 10 kg/m3  

- adequate to the density of the analysed sample is 1.0 - 1.5.10-8 m2 (Fig. 5). The 
material of the analysed sample consisted of the mineral wool flocks filled in the frame 
and the permeability of the material varied spatially from the lower permeabilities of the 
particular flocks to higher permeabilities of the contacts between them. Similarly also 
the contact between the material and the surrounding plates was not perfect. Continual 
interface layer with higher permeability was between the sample and the plates of the 
measuring apparatus (Fig. 1). Further due to its compressibility the material has 
tendency of settling with subsequent increase of thin continuous air layer between the 
measuring plate and the upper sample boundary. In this context the increase of the 
apparent thermal conductivity with temperature difference caused by natural convection 
in the low density fibrous material is explainable by imperfect contact between the 
insulation and the impermeable boundaries (Fig. 1). The actual Nu versus Ra values 
depend on the actual permeable material properties, its geometry and the boundary 
conditions in an experimental device. The results of the measurements in horizontally 
oriented mineral wool layer with density below 10 kg/m3 agree with the measurements 
of the other authors and confirm that natural convection can occure already at Ra = 3. 
 
5  Conclusion 
 
The measurements of the heat transfer in horizontally oriented low density mineral wool 
plate have been done. The measurements were carried out in order to assess two 
different relations: the temperature dependence of effective thermal conductivity (heat 
transfer without natural convection) and the temperature difference dependence of 
apparent thermal conductivity (heat transfer with natural convection). Due to specific 
character of their structure only permeable boundaries are characteristic for lightweight 
mineral wool  

0 5 10 15 20 25 30 35
Ra [-]

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

N
u 

[-]

own measurement

measurement by Jonsson [4]



38 

 
 

 
 

 
 
 
 

 
 

 
 
 
 
 
 

Fig 5  Experimental permeability coefficients of inorganic fibrous insulation materials 
insulation layers. The assessment of heat transfer by the values of Nusselt number has 
confirmed the occurence of natural convection already at the Rayleigh values higher 
than zero. 
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Abstract 
 
The presented paper is focused on the review of the Transient Methods. Data 
uncertainty is discussed from the point of view of data consistency relation considering 
measured, published and recommended data. Theory of the methods, experimental 
arrangement and the measuring regime considering sensitivity coefficients and 
correlation of the measured parameters are presented. The results of the intercomparison 
on PERSPEX using Pulse Transient and Step – Wise Transient are presented. Data 
uncertainties of thermal conductivity are up to 6 % for Perspex. 
 
Key words: transient method, specific heat, thermal diffusivity, and thermal 
conductivity 
 
1  Introduction 
 
Transient methods are based on the generation of the dynamic temperature field inside 
the specimen. The measuring process can be described as follows: The temperature of 
the specimen is stabilized and uniform. Then a small disturbance in the form of a pulse 
of heat or a heat flux in the form of a step-wise function is applied to the specimen. A 
thermometer either unified with the heat source or placed apart from the heat source 
measures the temperature change (temperature response). From the temperature 
response to this small disturbance, the thermophysical parameters can be calculated 
according to the model used. Technically, the dynamic temperature field is generated by 
the passage of the electric current through a line or a plane electrical resistance. Basic 
characteristics of the transient methods are the following: 

- heat source – sample geometry 
- way of generation of the temperature field 
- heat source – thermometer configuration 
- number of measured thermophysical parameters. 

Experimental arrangement corresponding to the described measuring process gives a 
group of methods that are specified in Table 1 together with the parameters that can be 
obtained by use of specific method [1].  

Any transient experiment require the answer to the following questions: 
1. How long should be realised the transient? 
2. In which time interval of the transient should be applied the evaluation 

procedure? 
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3. What size relation of the sample to the heat source – thermometer 
configuration should be used? 

Present contribution discusses measuring regime, theory, experimental arrangement 
and intercomparison measurements made on PERSPEX by pulse transient [2] and step-
wise transient [3] method. The paper should give the answer the above mentioned 
questions. Pulse transient and step – wise transient methods will be chosen for the 
analysis and PERSPEX for intercomparison. 
 
Table 1.: Transient methods. 

Hot Wire Method 
 
current 

I 

heat source and thermometer 

  
 
 
 
thermal conductivity 

Pulse Transient Method 

current pulse

I t0

heat source thermocouple

h

sample

II IIII

  
specific heat, thermal diffusivity and 
thermal conductivity 

Step-Wise Transient Method 

current pulse

I

heat source and thermometer thermocouple

h

sample

II IIII

  
specific heat, thermal diffusivity and 
thermal conductivity 

Hot Plate Transient Method 

current pulse

I

heat source and thermometer

sample

IIII

  
thermal effusivity 

 
Hot Disc Transient 

current pulse

I

heat source and thermometer

sample

IIII

 
 
thermal conductivity, thermal diffusivity 
and specific heat 

Gustafsson Probe 

current pulse

I

heat source and thermometer

sample

IIII

 
thermal conductivity, thermal diffusivity 
and specific heat 
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2  Comments on accuracy 
 
Data reliability depends on intercomparison measurements using various methods in 
different laboratories. Criterion of data reliability is data consistency relation 
 

ρ=λ ac           (1) 
 
where c is specific heat, a thermal diffusivity, λ thermal conductivity and ρ is density. 
Data consistency relation includes thermophysical parameters that are defined is 
different way considering thermodynamic state. A crucial problem exists regarding data 
consistency relation when different methods are used. Intercomparison measurements 
include, usually, various kinds of methods. General question is what data agreement 
can be achieved when using different methods. High precision might be achieved 
when intercomparison is performed on stabile materials where heat transport obeys 
Fourier law, only. The presented analysis will be performed within the limitation given 
by Fourier law.  
 
3  Theory of the method 
 
The model of a method is characterized by a temperature function. The temperature 
function is a solution of the partial differential equation with boundary and initial 
conditions corresponding to the experimental arrangement. We will concentrate on the 
pulse transient [2] and step-wise transient [2] methods.  

The thermophysical parameters can be found using the temperature function by 
appropriate fitting technique. The sensitivity coefficients and correlation give measuring 
time (time during which the temperature response is scanned) and time window in 
which the evaluation technique can be applied over the temperature response. The 

sensitivity coefficient [4] is given by 
p

thTp i
p ∂

∂=β ),(  and correlation [5] by γ(t) = βa/ βc 

where p is parameter to be analysed and Ti(h,t) is the temperature function. The 
calculated temperature functions the corresponding sensitivity coefficients and 
correlation are shown in Fig. 1 for pulse transient and step wise transient as functions of 
the Fourier number F = at/h2. Calculations were performed using data for PERSPEX, 
i.e. thermal diffusivity a = 0.12 10-6 m2 sec-1, density ρ = 1184 kg m-3, specific heat cp = 
1254 J kg-1 K-1 and specimen thickness h = 0.005 m. 

Correlation for both started to be serious for Fourier number F > 2. Thus measuring 
time (time during which the temperature response is scanned) should be F < 2. Time 
window for data evaluation should be in the range where sensitivity coefficients have 
high value and low correlations. For pulse transient method the time window is 0.2 < F 
< 0.5 while for step - wise transient it is 0.5 < F < 1.8.  
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Fig. 1.: Temperature functions Ti(h,t) sensitivity coefficients βa and βc and correlation 
γ(t) = βa/ βc as functions of the Fourier number F = at/h2 for Pulse Transient (up) and 
for Step Wise Transient (down). Curves are calculated for PERSPEX. 

 
 
3.1  Modelling of experiments 
 
Results of difference analysis of theoretical temperature responses give a detailed 
picture regarding a choice of time windows in which data are evaluated [3]. Difference 
analysis is based on the fitting of the temperature function over the theoretical points. 
The points were calculated using, again, the temperature function every 0.2 sec when 
output was represented by 3 valid numbers for pulse transient and every 0.5 sec when 
output was represented by 4 valid numbers for step-wise transient methods. A strobe 
(time interval) of 4 sec for pulse transient and 30 sec for pulse transient was chosen in 
which the fitting procedure was applied over a part of the theoretical response using, 
again, temperature function. The strobe was consecutively shifted over theoretical 
temperature response starting from 0.2 sec up to 400 sec in steps 0.2 sec for pulse 
transient. Strobe of 30 sec was applied on calculated temperature response shown in 
Fig. 1 starting from 0.5 sec up to 500 sec in steps 0.5 sec for step – wise transient. Fitted 
values of specific heat and thermal diffusivity are shown in Table 3 as functions of the 
Fourier number F that corresponds to the mean time of the strobe. Data stability is poor 
outside the interval 0.4 < F  < 0.6 for specific heat and F  < 0.4 for thermal diffusivity 



43 

when pulse transient is used. Different picture can be obtained when one uses step-wise 
transient. Data stability for that case is poor for both specific heat and thermal 
diffusivity outside the interval 0.9 < F  < 1.7.  

The temperature response is scanned up to the moment when the correlation of the 
sensitivity coefficients starts to be high, i.e. up to F  ~ 2. This criterion gives the 
measuring time and it follows from figure 2. Time window in which the fitting 
procedure can be applied is 0.4 < F  < 0.6 for specific heat and F  < 0.4 for thermal 
diffusivity when pulse transient is used and for both, i.e. for specific heat and thermal 
diffusivity within the interval 0.9 < F  < 1.7 when step-wise transient is used.  

 
3.2  Ideal model 
 
Temperature functions shown in Fig. 2 that, in fact, are solutions of partial differential 
equations are valid for ideal model. Clear differences exist between the ideal model and 
the real one. Table 1 lists differences between the ideal model and the real one and it 
specifies the criteria that should be experimentally arranged to approach the ideal 
model. When using real models then temperature functions have a more complicated 
form. Formally, the difference is expressed in a suitable form of boundary or initial 
condition. Then the solution corresponding to real experimental setup can be formal 
rewritten in a form 
 

,...),,,,(),(),( γβαtxftxTtxT i=        (6) 

 
 

Table 2.: Differences between the ideal and the real models. 
Ideal model Real arrangement Criteria of reliable data 
Non-limited specimen Limited specimen Influence of the heat loss 

from the specimen surface 
should be limited 

Negligible thickness of 
the heat source 

Actual thickness of the heat 
source 

Material of the heat 
source and the specimen 
are the same 

Heat source is made of 
metal that, usually has 
different thermophysical 
parameters as the specimen 

 
Heat capacity of the heat 
source should be negligible in 
comparison to the specimen 

Ideal thermal contact 
between the heat source 
and the specimen exists 

Non-ideal thermal contact 
exists between the heat 
source and the specimen 

Thermal contact resistance 
should be negligible in 
comparison to the thermal 
resistance of the specimen 

Negligible mass of the 
thermometer made of the 
same material as the 
specimen 

Non-negligible mass of the 
thermometer made of 
different material as the 
specimen 

Heat capacity of the 
thermometer should be 
negligible 
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Table 3.: Modeling of experiment. PERSPEX c= 1350 J kg-1 K-1, a = 0.12 x10-6 m2 sec-1, r = 1184 kg m-3 
Pulse transient 
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Table 4. Experimental analysis of the measuring regime 

Pulse transient Step wise transient 
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where ),( txTi  is the temperature function of an ideal model, in our case the temperature 
shown in Fig. 1, ,...),,,,( γβαtxf  is a correction function characterising the deviation 
from the ideal models, and α, β, γ,…are parameters characterising heat capacity of the 
heat source, contact thermal resistance, heat loss from the specimen surface, etc. [2]. For 

,...),,,,( γβαtxf →1 one obtains criteria for use of the ideal models, in fact for use of the 
temperature functions valid for ideal model. 
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3  Experiment 
 
The Thermophysical Transient Tester RT 1.02 (Institute of Physics SAS) was used for 
experiment. Both the pulse transient and the step-wise transient regime were used for 
intercomparison measurements. A test of correlation was made to find experimentally 
the measuring time and the time window suitable for evaluation in the following way: 
The temperature response was scanned over 300 sec for pulse transient and 300 sec for 
step – wise transient method (measuring time up to F = 2). Time difference between 
two scans was 3.3 sec. Difference analysis was performed to find the measuring time 
and time window for data evaluation in a similar way as in paragraph 3.2. A strobe of 
10 sec (ΔF = 0.033) for pulse transient and 66 sec (ΔF = 0.22) for step-wise transient 
was chosen in which the specific heat and thermal diffusivity was found by fitting 
procedure. The strobe was consecutively shifted over experimental temperature 
response. The results of this analysis are shown in Table 3. Specific heat for both pulse 
transient and step-wise transient method have a plateau where data are stabilised and are 
near to recommended value. However data of thermal diffusivity show systematically 
progress. A more detailed study needs to be performed to find agreement between the 
theory and the experiment when time window for thermal diffusivity is searched for. 
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Figure 2.: Results of intercomparison on PERSPEX. 
 

Results of intercomparison made on PERSPEX are shown in Fig. 2. Variations in 
heat pulse width and energy, heat flux, reassembling and surrounding atmosphere were 
used. Mean values and standard deviation of the thermal diffusivity, specific heat and 
the thermal conductivity were obtained by averaging of all data excluding values that 
show large shifts for both the pulse transient and the step – wise transient. The error 
bars characterizing the precision of the experimental set up are shown. Shifts of 
experimental data for both the pulse transient and the step – wise transient methods can 
be found. This indicates that discrepancies still exists between the model and the 
experimental set up.  



47 

 
5  Conclusions 
 
A new class of the methods known as transient methods for measuring specific heat, 
thermal diffusivity and thermal conductivity is presented. Experimental set-up and 
methodology for pulse transient and step – wise transient is discussed. Results of 
intercomparison measurements made on PERSPEX are presented. Data are 
intercompared with published and recommended ones. Data shift was found. Although 
data uncertainty is for specific heat within 2%, for thermal diffusivity within 4% and 
thermal conductivity within 4.5% [2], data shift is within 10%. Data shift is caused by 
differences between ideal models and the real experimental set-up, choice of the time 
window for data evaluation and the contribution of the radiation component to the heat 
transport [7].  
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Abstract  
 
PERSPEX is material that is easy to produce with the reproducible physical properties. 
PERPSEX - PMMA is a vinyl polymer, made by free radical vinyl polymerization from 
the monomer methyl methacrylate. This material was chosen as the Certified Reference 
Material (CRM) for the measurement of thermal conductivity by Guarded Hot Plate 
Method (NPL). Using literature data, steady state method, and transient methods, that 
give thermal conductivity, thermal diffusivity and specific heat within a single 
measurement, one can intercompare thermophysical data providing that data 
consistency relation λ=ρ*c*a is used. The intercomparison, usually, indicates data shift 
depending on method used. Intercomparison of the thermophysical data measured by 
two different dynamic methods - Pulse Transient and Gustafsson Probe Methods, 
literature data and recommended data is discussed. The specimen thickness dependency 
of thermophysical parameters of PERSPEX measured by Pulse Transient Method was 
found. Similar thickness dependency of thermal conductivity measured by Guarded Hot 
Plate Method was referred in the literature.  
 
Key words: PMMA, PERSPEX, thickness dependency of thermophysical parameters, 
Pulse Transient Tester, Hot Disk Thermal Constants Analyser, methodology. 
 
1 Introduction 
 
The necessity of CRM and the perfect knowledge of its properties are evident, 
especially when developing new methods as well as their methodologies. 
Thermophysical data of PERSPEX were intercompared using data found in the 
literature, data recommended by NPL [3] as well as data measured by different dynamic 
methods (Gustafsson Probe, Pulse Transient Method). Several material sources were 
used for experiments. Totally, in this paper, there were compared data measured by 
three different experimental methods using four various material sources. Different 
specimens were used for intercomparison (Table 1). All data are compared in a review 
graph for thermal conductivity (Figure 4). In our paper we used PERSPEX for 
investigation of the dependency of thermophysical data on specimen thickness. 
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Table 1. List of methods and PERSPEX (PMMA) specimens used for intercomparison 
Method Specimen origin Specimen diameter 
Pulse transient Commercial batch 1 [1] 18 mm 
Pulse transient NPL 20 and 30 mm 
Pulse transient Commercial batch 2 30 mm 
Gustafsson probe Commercial batch 2 50 mm 
Guarded hot plate Not specified [2] 200 mm 
Guarded hot plate NPL [3] 76 mm 

 
2 Experimental techniques 
 
Transient methods for measuring the specific heat, thermal diffusivity and thermal 
conductivity were used [1], [4] The methods allow to investigate the specific heat, 
thermal diffusivity and thermal conductivity within single measurement.  
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Figure 1. Principle of the Pulse Transient Method and example of the transient record. 

 
 The principle of the Pulse Transient Method and specimen arrangement is shown in 
Figure 1. The heat pulse is generated by the passing of the electrical current through the 
plane electrical resistor made of a metallic foil of 20 μm thick. The temperature 
response in measured by the thermocouple with diameter of 50 μm. All measurements 
were made at room temperature and in air as well as in vacuum of 0.1 Pa. The 
thermophysical parameters are calculated from the temperature response to the heat 
pulse. Then the thermal diffusivity is given as  

mt
ha
2

2
=  , (1) 

the specific heat as,  

mhTe
Qc
ρπ

=
2

 , (2) 

and the thermal conductivity as 

ρ=λ ac  , (3) 

where otRIQ 2=  and R is the electrical resistance of the heat source, ρ is density and 
other parameters are given in the Figure 1.  
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The Hot Disk Thermal Constants Analyser™ [4] sometimes referred to as the 
Transient Plane Source or Gustafson Probe [4] was used as second dynamic method. 
The principle of the method drawn in Figure 2 is based on the transient heating of a 
plane double spiral sandwiched between two pieces of the investigated material. By 
passing an electrical current through the spiral and recording the resistance increase of 
the sensor at the same time, the temperature change is obtained. Temperature record is 
used to determine both transport coefficients - the thermal conductivity and the thermal 
diffusivity from one single transient. The parameters are found by fitting of the 
temperature function (4) on the temperature record providing rules given in [4]. Specific 
heat is calculated from data consistency relation λ/a=c.  
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Figure 2. Principle of the Hot Disk Thermal Constants Analyser and example of the 
transient record (t/θ means dimensionless time constant). 
 

The temperature function has a form 
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θ is referred to as the characteristic time of the transient record, t is the time for the 
temperature record, r is the radius of the outer concentric circle, and m is the number of 
electrically conducting ring sources; R0 is the initial electrical resistance and α is the 
Temperature Coefficient of Resistivity (TCR) of the probe. A detailed description of 
this experimental technique can be found elsewhere [4].  
 
2 Experimental results 
 
2.1 Intercomparison results 
 
The Figure 3 shows the intercomparison of the thermophysical parameters measured by 
Transient Pulse Method [1] and Gustafsson Probe [4]. The data used representing 
properties of the same material batch (material batch 2). The specimen of 30 mm in 
diameter and 6 mm thick was used for the Pulse transient Method.  
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Figure 3. Thermophysical parameters of PMMA (PERSPEX) measured by Pulse 
Transient Method and Gustafsson Probe Method. The first three points were measured 
by Gustafsson probe method on sensors of different diameters (6.6mm, 13mm 20mm). 
Every point represents an average that were obtained at the same experimental 
conditions (heat pulse energy, pulse width, test of reproducibility after reassembling) for 
Pulse Transient Method. 
 
Averaged values with standard deviations were calculated for all points shown in Figure 
3 that were measured by Pulse Transient Method. The largest percentage difference is 
4.5% for thermal diffusivity. Difference in thermal conductivity and specific heat is less 
than 1.6%. All data are in reasonable coincidence.  
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In the case of Gustafsson Probe the specimen diameter was 50 mm. Each of three 
points represents statistics of at least 5 measurements performed at different radius of 
the probe.  
 
2.2 Thickness dependency 
 
Data in Figure 4 were collected from various sources in the literature [1,2] and are 
compared with our data measured by the Pulse Transient Method and Gustafsson Probe 
Method. Data measured on PERSPEX of NPL origin by Pulse Transient Method show 
clear thickness dependency of thermophysical parameters for both 20 and 30 mm of 
diameter specimen sets. Similar behavior was observed on Hot Guarded Disk Method 
[2]. The value of thermal conductivity λ=0.192 certified by NPL is depicted in figure 
too. The penetration depth (corresponding to the sensor constant and thus the sensor 
radius) substitutes the thickness of the specimen for Gustafsson Probe.  
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Figure 4. Thermal conductivity, thermal diffusivity and specific heat of PMMA 
(PERSPEX) measured by Pulse Transient Method and Gustafsson Probe Method. The 
NPL certified value of thermal conductivity is 0.192 W m-1 K-1. Specimen origin is 
given in Table 1. 

 
3 Conclusions 
 
The paper presents the results of the intercomparison measurements and of the study of 
the thickness dependency that was obtained on PERSPEX. The Pulse Transient Method 
and Gustafsson Probe Method give data within an experimental error less that 4.5 % for 
thermal diffusivity and even less than 1.6% for thermal conductivity and specific heat. 
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Both methods are able to determine thermal diffusivity, thermal conductivity and 
specific heat within single transient record.  

Data measured on PERPSEX (NPL) by Pulse Transient Method on the specimens of 
20 and 30 mm diameters clearly show the dependency of thermophysical parameters on 
thickness of the specimen. This is supported by data previously measured using Pulse 
Transient Method [1] and by data using Guarded Hot Plate [2]. Data collection 
represents three different methods and four different PERSPEX origin. The Pulse 
Transient and Gustafsson Probe method show the same thickness dependency as Hot 
Guarded Plate Method (Steady state method).  
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Abstract 
 
The flash method has become a standard method for measuring thermal diffusivity of 
various materials. Many factors influnce the accuracy of thermal diffusivity 
determination thermal diffusivity. One of them is transfer function of the measuring 
system and its time constant. This time constant limits the thickness of measured 
samples of materials with high thermal diffusivity. The limitations of a simple device 
used in our institute are discussed in this contribution. 
 
Key words: flash method, transfer function, time constant, response delay 
 
1  Introduction 
 
The flash method has gained a widespread acceptance in the thermophysical 
community. The method was originally proposed by Parker et al.[1] nearly four decades 
ago. The concept of the method is simple. A sample is irradiated by a light pulse on the 
front side and the temperature response at the rear side is detected. The system which 
detects and processes the measured signal usually consists of a temperature sensor, 
preamplifier and A/D converter. The time response of such a system influences the 
precision of the measurement. During the last years the flash method has been 
succesfully applied to measure thin foils or materials with high thermal diffusivity. In 
this case the transient response of the measurement system can cause a significant error. 
Therefore it is necessary to know the transient response characteristics of the system. In 
the paper we present an evaluation of the time constants of the device built at the 
Institute of Physics SAS [2]. 
 
2  Evaluation of the time constant of the measuring system 
 

The motivation to find the transfer function of our apparatus was the intention to 
measure copper samples of thickness of few mm. In this case the response is fast and 
could be distorted by the inertia of the apparatus. 

The apparatus consists of a flash lamp as a light source, thermocouple as a detector, 
preamplifier, amplifier and A/D converter.  The flash lamp gives just a small amount of 
energy and therefore we could measure only thin samples. The resulting precision of the 
measurement could be influenced by the flash pulse duration and delay of the 
measurement system. 
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2.1  Duration of the flash pulse 
 
 We measured the duration of the flash lamp pulse by a phototransistor. The shape of 
the detected pulse was influenced by the position of this photodetector. A broader peak 
was observed when it was placed closer to the light source. So the width of the peak was 
influenced by the intensity of the measured heat flux. The width of the flash duration 
was determined to be less than 0.5 ms. A typical response of the photosensor is shown 
in Fig.1. 

 
2.2  Delay of the measuring system 
 
The response of a 1-st order system with the time constant τ and input V(t) can be 
written as 

 

                                                                                    (1)   

 

A first order system with the time constant τ1 and a stepwise input has a response 
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A second order system with the time constants τ1, τ2 and a stepwise input has a response 
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Fig. 1: Duration of the flash pulse. 
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Fig. 2: Scheme of the measuring system. 

 

Our measurement system consists of a thermocouple, preamplifier, amplifier and A/D 
converter (Fig. 2).  Our aim was to evaluate the time constants of individual components 
by a unit step input. The unit step was realized by the electric circle depicted in Fig.3.  

 

Fig. 3:  Scheme of the unit step input. 

 

The A/D converter was Keithley DAS1200 with sampling frequency 50 kHz. The 
amplifier with the time constant τ3 was a built-in amplifier on the board of DAS1200 
with gains 1, 10, 100 or 500.  The measured response to the unit step was under our 
resolution, so the estimated τ3 < 20 µs. 

The preamplifier is based on MAA 725 with no filter added. The response to the unit 
step input is shown in Fig.4 (curve τ2). The time constant τ2 was estimated by fitting the 
response to the Eq.(2) using the Levenberg-Marquardt optimization technique. The 
fitting gave the value of τ2 = (275 ± 4) µs. 

The tested thermocouple was a chromel-alumel intrinzic thermocouple of diameter f 
= 76.2 µm. The thermocouple was glued to a copper foil of thickness l = 100µm. The 
unit step was obtained by irradiating the foil with a short burst of radiant energy. The 
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time constant of the thermocouple was determined from Eq.(3) by using τ2 as known 
from the previous experiment. The estimated value of τ1 = (481 ± 22) µs.  

 

3  Conclusion 
In the paper we determined the time constant τ of the device for measuring thermal 
diffusivity by the flash method.  Joint time constant (τ1 + τ2 + τ3) of the measurement 
system was estimated to be 1 ms. With this time constant we can measure copper 
samples of thickness approximately 5 mm for which the characteristic time T1/2 is about 
100 times longer than estimated τ. When measuring thinner samples a correction of the 
response is necessary [3].  
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Abstract 
 
Determining the temperature dependent thermal conductivity based on solution of the 
inverse heat conduction problem of functional estimation using conjugate gradient 
algorithm is presented. Estimation of the thermal conductivity is obtained by using just 
boundary measurements of temperature  (i.e., internal measurements are unnecessary) 
and no prior information is available on its functional form. 
 
1  Introduction 
 
This paper presents the inverse method, which can be considered as a reasonable 
alternative to the classical methods for measuring thermal properties of solid material 
(the steady-state method, the probe method, the periodic heating method, the pulse 
method, etc.). With just temperature measurements taken at media boundaries and no a 
priori information about the unknown thermal conductivity as function of temperature it 
is possible to determine thermal conductivity for wide temperature range.  

This method solves inverse transient heat conduction as a general optimization 
problem by applying the adjoing equation approach coupled to the conjugate gradient 
algorithm. 
 
2  Formulation of the problem  
 

We consider the one-dimensional, non-linear heat conduction problem in slab 
geometry. The dimensionless mathematical formulation of this problem can be 
expressed as  
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Where the following dimensionless quantities are defined: 
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Lxx /= ,  rTTT /= ,  rkkk /= ,      TkLqq r/= ,  2/ LCktt rr ρ= , 

rT   and  rk  refer to the nonzero reference temperature and thermal conductivity, 
respectively, rCρ  is the heat capacity per unit volume. We assume rTT =0 , i.e., 10 =T  
in the direct problem (1).  

 
In the present problem, the thermal conductivity )(Tk  is regarded as unknown, but 

everything else in equation (1) is known. In addition, temperature readings taken at 
some appropriate locations are considered available. The temperature readings taken 
over the time period et  are denoted by )(),( tYtxY ii ≡ , 1=i  to m , where 1=i  and 
m are always corresponding to 0=x  and 1  (i.e., boundary measurements), 
respectively. 

The inverse problem for ideal situation is defined as follow: find )(Tk such that  
);,)( ktxtYi iT(= , for 1=i  to m  and over the time period et . Since the measured 

temperature )(tYi contains measurement errors, this equation needs to be solved in the 
least square sense. Then the inverse problem is stated as follows: by utilising the 
measured temperature data )(tYi , estimate the unknown ),( txk over et . This is 
classified as the function estimation for the determination of the non-linear thermal 
conductivity )(Tk , because no prior information is available on the functional form of 

),( txk . The unknown thermal conductivity )(Tk  is obtained in such a way that the 
following functional is minimised: 

∫ ∑ −=≡ et
m

iiii dttxYtxTtxkJTkJ 0
1

2),(),(),()(  (2) 

here, the quantities ),( txT ii are calculated from the solution of the direct problem by 

using an estimated ),(ˆ txk  for the exact ),( txk  at the measurement locations ixx = .  
 

The direct problem (1) is nonlinear since thermal conductivity is function of 
temperature, therefore, an iterative technique is needed (finite difference method by the 
solver LSODA [1]). )(Tk cannot be replaced by ),( txk , since is unknown before the 
direct problem calculations. However, when the temperatures ),( txT  are converged by 
iterative technique under some initial and boundary conditions, the values of ),( txk  
should be fixed because temperatures ),( txT  are known and fixed at any ),( tx .  
 

For the estimation ),( txk  by minimizing the functional (2) is using the following 
iterative process based on the conjugate gradient method [2] 

),(),(ˆ),(ˆ 1 txPtxktxk nnnn β−=+   for    ,...2,1,0=n  (3a) 

where nβ  is the search step size in going from iteration n  to iteration 1+n  and 

),( txPn  is the direction of descent given by 

),(),(),( 1 txPtxJtxP nnnn −+′= γ  (3b) 
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which is a conjugation of the gradient direction ),( txJ n′  at iteration n  and the 

direction of descent ),(1 txPn−  at iteration 1−n . The conjugate coefficient is 
determined from 

∫ ∫∫ ∫ −′′= 1
0 0

211
0 0

2 )()( ee t nt nn dtdxJdtdxJγ  (3c) 

with  γn = 0 for any n . The convergence of this iterative procedure is guaranteed in [3].   
 
 
3  Iterative process 
 
To perform the iterations (3), it is needed to compute nβ  and nJ ′ .  

To compute the step size nβ : It is assumed that when ),( txk  undergoes a variation 
t)k(x,∆ , ),( txT  is perturbed by )( txTtxT ,),( ∆+ . Then replacing k by kk ∆+  and T  

by TT ∆+ in direct problem (1), subtracting from the resulting expressions the direct 
problem (1), the system of equations for sensitivity function )( txT ,∆  is obtained: 
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The functional )k( 1n+ˆJ  for iteration 1+n  is obtained from (2) and (3a), such that 
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where )ˆ( n
i kT  is the solution of the direct problem by using estimate ),(ˆ txk  at ixx = . 

The sensitivity function iT∆  is taken as the solutions of (4) by letting npk =∆ . The 

step size nβ  is determined by minimising the functional (5) with respect to nβ , as 
follows 
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In order to calculate the gradient of the functional t)(x,J' , it is needed to determine 
an adjoint function t(x,λ  in addition to the sensitivity function )( txT ,∆  [4]: 

Equation (1a) is multiplied by the adjoint function t(x,λ  and resulting expression is 
integrated over the time and corresponded space; then the result is added to (2), such 
that  
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the variation J∆  is obtained by perturbing k by k∆  and T by T∆ from (7); 
the initial and boundary condition of the sensitivity problem (4) then leads to the adjoint 
problem for determination of  function t(x,λ  
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Finally gradient ),( txJ ′  is calculated from  
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∂
∂−=′ ),(),(),( λ  (9) 

In each iteration step it is needed to solve the direct problem, the sensitivity problem 
and the adjoint problem. 

The  check condition is specified as 
 

e
n tmtxkJ 21 ),(ˆ δ<+  (10)  

where δ  is the stand deviation of the measurements (we assume that the temperature 
reziduals may be approximated by δ≈− ii YT , which is assumed to be constant).  
 
4  Results 
 
In the verification of he cojugate gradient method in predicting )(Tk  by the inverse 
analysis from the temperature recordings, we employed an artificial numerical example. 
The thermal conductivity )(Tk is assumed to vary with temperature in the form 

)/exp()/sin()( 43210 KTKKTKKTk ++=  (11) 

where the constants 0K , 1K , 2K , 3K , 4K  are taken as 1, 2.5, 5, 80 and 2.5 

respectively. The initial guess of ),(ˆ txk  used to begin the iteration is taken 10. The 
space and time increments are taken as 1.0=∆x  and 1.0=∆t , respectively; the 
boundary heat fluxes are taken as 201 =q  and 140 =q ; the total measurement time 

7=et  and the measurement time step is taken the same as t∆ . 
 

The estimation of ),( txk  by using 11 and 2 (boundary) sensors with exact 
measurements shows a very good agreement with exact values ),( txk . Therefore, the 
conjugate gradient method provides to determine temperature-dependent thermal 
conductivity without the necessity of using interior sensors. 
 



63 

In order to evaluate the results for situations involving random measurement (input) 
errors, we assume normally distributed no-correlated errors with zero mean and constant 
standard deviation. The simulated inexact measurement data are expressed as  

ωδ+= exactYY , (12) 

where exactY  is the solution of the direct problem with an exact )(Tk , δ  is the standard 
deviation of the measurements and ω  is a random variable that is generated using the 
Monte-Carlo treatment and is within 576.2−  to 576.2 for a %9.99  confidence bounds. 
The average relative error between exact and estimated values is defined as 
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where m and n  represent the total discrete number of position and time increments, 
respectively.  

When the dimensionless measured temperatures with errors δ = 0.00 and 08.0=δ  
are obtained according to (8), the inverse solutions using these inexact measurements 
are compared to exact values. The average relative errors between exact and estimated 
values are 350.1 and %071.6 , respectively. For the case when 08.0=δ , the 
dimensionless measured temperature errors are within –0.19 to 0.19 for a 99% 
confidence bounds, which implies that a total of about 0.38 dimensionless temperature 
error is allowed. According to Fig. 1. the dimensionless temperature at x = 0.06 is range 
from 1 to 12, thus the average relative measurement error is about 2 %. By using this 2 
% measurement error, one could estimate the thermal conductivity with an average 
relative error of about 6 %. This proves that the measurement errors are not amplified 
the errors of estimated thermal conductivity. 

The experiment values are from the furnace-slag based concrete with bulk density 1 
430 kg.m-3. The length of material sample is 0.2 m. The space and time increments, 
boundary heat fluxes, total measurement time and measurement time step are taken 
identically as in the numerical example. Realistic physical values of thermal 
conductivity as function of temperature with just boundary temperature measurements 
are showed on Fig. 2. 

 

Fig. 2 Realistic physical values of thermal 
conductivity as function of temperature 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Exact and estimated values of  
k(T) at x = 0.6  
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5 Conclusion 
 

The conjugate gradient method is applied for the solution of the inverse problem to 
determine the temperature-dependent thermal conductivity without the necessity of 
using interior sensors. The measurement errors are not amplify the errors of estimated 
thermal conductivity, and therefore, the present technique provides a confident 
estimation. 
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Abstract 
 
This paper deals with uncertainty analysis of the thermal conductivity measurement 
using the transient hot wire method. The characterization is made on the sample of low-
density, polyethylene BRALEN SA 200-22. The measurements are performed on the air 
at the room temperature. The sources of measurement errors are analyzed and 
uncertainty of the measured value of the thermal conductivity is evaluated. The analysis 
shows that the combined standard uncertainty of the thermal conductivity measurement 
is about ± 3.3 % for 68 % confidence level.  
 
Key words: transient hot wire method, thermal conductivity, components of the 
uncertainty 
 
1 Introduction 
 
The reliability of every measurement confirms a quantitative statement of its uncertainty 
that accompanies it. General rules for evaluating and expressing uncertainty in 
measurement, which can be followed at various levels of accuracy, have been 
established as the GUM method (Guide to the Expression of Uncertainty in 
Measurement) [1,2]. The method has been adopted by various regional metrology and 
related organizations worldwide.  

The GUM approach has been followed in expressing the uncertainty of an estimation 
of several thermophysical properties including the thermal conductivity using the 
transient hot strip technique [3] or the guarded hot plate technique [4] as well as the 
thermal diffusivity using the laser flash method [5].  

Here we present uncertainty analysis of the thermal conductivity measurement using 
the transient hot wire method [6], which is a standard test method of the measuring the 
thermal conductivity.  
 
2 Classification of uncertainty components 
 
Every measurement is affected by measurement errors that cause the difference between 
the measured value of the estimated property (in our case the thermal conductivity) and 
its true value. The true is only an approximation of the value subjected to the 
measurement.  
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The uncertainty of the result of a measurement consists of several components, 
which may be grouped into two categories according to the method used to estimate 
their values:  

Type A standard uncertainties are evaluated by the statistical analysis of series of 
observations.  

Type B evaluation of standard uncertainty is usually based on scientific judgment 
using all the available relevant information, which may include previous measurement 
data. 

All the individual uncertainties of the result measurement can be combined. The 
combined standard uncertainty uc(y) of a measurement result y is obtained by 
combining the individual standard uncertainties ui arising from a Type A or a Type B 
evaluation. Taking a first order Taylor series approximation of the measurement 
equation Y = f(X1, X2, ..., XN)  the equation referred to as the law of propagation of 
uncertainty can be received in the form 
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The partial derivatives of f with respect to the xi are sensitivity coefficients, ui is the 
standard uncertainty associated with the input estimate xi; and ui,j is the estimated 
covariance associated with xi and xj. If the probability distribution characterized by the 
measurement result is approximately normal (Gaussian), then it is believed with an 
approximate level of confidence of 68 % that the measurement result (measurand Y) can 
be written as Y = y±uc(y).  
 The expanded uncertainty U is the measure of uncertainty which can be obtained by 
multiplying uc(y) and by a coverage factor k and it is confidently believed that Y = y±U. 
When the normal distribution applies and uc is a reliable estimate of the standard 
deviation of y, U = 2uc (i.e., k = 2) defines an interval having a level of confidence of 
approximately 95 % and when U = 3uc (i.e., k = 3) a level of confidence is greater than 
99 %.  
 
3 Hot wire method 
 
The ideal analytical model assumes an ideal - infinite thin and infinite long line heat 
source (hot wire), operating in an infinite, homogeneus and isotropic material with 
uniform initial temperature T0. If the hot wire is heated since the time t = 0 with 
constant heat flux q per unit wire length, the radial heat flow arround the wire occures. 
The temperature rise ∆T(r,t) in any distance r from the wire as a function of time 
describes the simplified  equation [7] 

( )
Cr
ta

k
qtrT 2

4
ln

4
,

π
=∆    , (2) 

where k is the thermal conductivity, a thermal diffusivity and C = exp(γ), with γ the 
Euler’s constant. The thermal conductivity is calculated from the slope S of the 
temperature rise ∆T(r,t)  vs. natural logarithm of the time ln t  evolution using the 
formula 



67 

S

q
k

π4
=    . (3) 

The hot wire method can be applied in several experimental modifications [8]. 

 
4 Experimental apparatus  
 
The utilized computer-controlled experimental apparatus, that allows the determination 
of the thermal conductivity of solid, powders and granular materials is described in 
details elsewhere [9]. It allows to utilize one of three measurement techniques: standard 
(cross) wire technique, resistance potencial lead method and the probe modification of 
hot wire method.   

In the present study results of measurement obtained using the cross technique are 
analyzed. A wire cross is embedded in ground grooves between two equally sized 
samples. The cross consists of a linear heat source - the kanthal wire 0.4 mm in diameter 
(Bulten Kanthal AB) and of a spot welded thermocouple, K type, made from Ni-NiCr 
wires (Heraeus) 0.1 mm in diameter which acts as the temperature sensor. The hot spot 
of the thermocouple is in the direct contact with the heating wire and it is placed in the 
center of the sample. The cold junction is put on the reference place in Dewar cup at 
0ºC.  

The current flowing through the heating wire is produced by the stabilized regulated 
direct current supply Z-YE-2T-X (Mesit) operated by PC via remote control unit JDR-1 
(Mesit). High resolution data acquisition board PCL-818HG (Advantech) with lock in 
pre-amplifier Z-35 (Metra) is used for serial measurements of transient emf of the 
thermocouple, and the transient voltage corresponding to temperature rise. A 
proportional feedback temperature controller practices the temperature regulation of the 
electro-resistive furnace. The apparatus allows measurement on air or in a controlled 
environment, under atmospheric pressure, in the temperature range from room 
temperature up to 1200 oC.  

 
5 Samples and experimental results 
 
The measurements have been performed on the plastic samples made of low-density 
polyethylene (BRALEN SA 200-22). The Research Institute for the Processing and the 
Application of the Plastic Materials (VUSAPL Nitra) has prepared the samples from 
granulates produced by Slovnaft. The 'wire cross' was embedded between two sample 
blocks of 50 times 100 times 100 mm. The thermal contact was improved using the 
silicon sink compound paste (Dow Corning 340). We have performed measurement 
utilizing two different currents – 0.6 and 0.7 A. The measurements were performed at 
room temperature, on air under atmospheric pressure. Fig. 1 presents typical 
temperature rise vs. time evolution.  
 Achieved thermal conductivity results for two independent sets of measurements 
and calculated standard deviations are summarized in the Tab.1. The thermal 
conductivity values presented there are values calculated for each measurement as the 
average of five values obtained from a least-squares-fit of the linear part of recorded 
temperature rise vs. time data.  
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Fig. 1 Typical experimental temperature rise vs. time data and its least-squares-fit 

 
 To compare achieved results of the thermal conductivity of the test material (from 
the same sample) has been measured on the guarded heat flow meter installed in the 
Austrian Research Centers in Seibersdorf. These values have been taken as the 
reference values in the measurement. 
 
       Table 1. Results of the thermal conductivity measurement and their comparison 
 

 
No 

k 
[Wm-1K-1] 

U 
[Wm-1K-1] 

u 
 [%] 

kref 
[Wm-1K-1] 

1 0.318 0.0121 3.08 0.319 
2 0.312 0.0034 1.07 0.314 

mean  0.315   0.317 
 

We see very good agreement with the recommended values kref – values obtained 
independently in another laboratory.  

 
6 Uncertainty analyses 
 
The thermal conductivity is obtained estimating the slope of the measured temperature 
rise vs. time evolution in logarithmical scale over a defined time interval using the 
transient hot wire method. The sources of uncertainties in the thermal conductivity 
measurement are connected with the measurement of the temperature, stability of the 
time axis and stability of the power supply. The main sources of the non-measurement 
errors cause differences between the real conditions and the assumptions of the 
analytical model i.e., that the heating wire has finite non-zero diameter and the real heat 
capacity, that there is a thermal barrier between the wire and the sample, between the 
temperature sensor and the wire, that the sample and the wire have finite dimensions 
and that there the heat exchange between the sample surface may occur. The random 
component of the uncertainty is evaluated statistically analyzing the repeated 
measurement. 
 



69 

6.1 Type A uncertainty 
 
The relative standard deviation values in Table 1 represent the A Type uncertainties. It 
can be conducted that 3.1 % is the value that well represents the A Type uncertainty 
component.  
 
6.2 Type B uncertainty 
 
Because of several sources of this type of uncertainty, they will be discussed 
individually.  
 
Measurement errors 
 
Temperature measurement, time base stability, power supply 
The temperature is measured using the K type thermocouple made from spot-welded 
Ni-NiCr wires. Manufacturer specifies the typical accuracy better than 0.4 % of the 
measured value. If we take account of the uncertainties the thermocouple emf 
measurement that is in accordance with the PCL-818HG data acquisition board 
manufacturer of order 0.08 % we may estimate the uncertainty of the temperature 
measurement at value 0.5 %. It is supposed that the effect causes mainly systematic 
error in the temperature measurement. We can guess that the uncertainty of the thermal 
conductivity is about 0.1 %.   
 The time base is based on the PCL-818HG data acquisition board time system. The 
manufacturer specifies the stability and the uncertainty better than 0.01 %. The 
influence is so small that we do not have to consider it as a source of the thermal 
conductivity uncertainty. 
 The current is produced by the stabilized power source Z-YE-2T-X working in the 
stabilized current supply mode. Manufacturer specifies the current stability at level of      
0.05 %. The influence on the thermal conductivity uncertainty is then 0.1 %. 
 
Non-measurement errors 
 
Deviations of real experimental conditions from the ideal analytical model considered in 
the theory cause deformation of the temperature rise curve.  
 
Non-linearity of the beginning and of the end of the graph of ΔT(r,t) vs. ln t. 
Non-linearity of the initial part of the data is caused by finite radius and non-zero heat 
capacity of the wire and similar influence has the thermal contact resistance between the 
hot wire and the sample and between the hot wire and the temperature sensor. To 
overcome this we need to find the certain minimum time tmin, which corresponds to the 
beginning of the linear part of the curve. The time tmin can be determined either 
analytically - calculated with respect of the complex theory [9]. In our approach we 
utilize interactive calculating of the time tmin searching the linear part of graph of 
temperature rise against natural logarithm of the time. We can not directly evaluate the 
uncertainty of the thermal conductivity estimation caused by these effects. We try to 
eliminate these effects experimentally (using of thin wires, by improvement of the 
thermal contact using a silicon paste). Because of the way of the data reduction based on 
the checking of the least-squares fit of the data to the analytical model, we suppose that 
uncertainty is included in the random uncertainty (presented as the A Type). 
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Deformation of the end of experimental curve is caused mainly as a result of finite 
dimensions of the sample and finite length of the hot wire. Heat exchange at the sample 
surface can be eliminated when the thermal conductivity value is calculated from the 
least squares fitting on the linear part of the curve ΔT(r,t) vs. ln t. Similar like time tmin, 
the maximal time tmax can be calculated analytically  or could be find by an interactive 
searching [9]. In our experiment we use the second approach. To eliminate the other 
boundary effects experimentally we use relatively large samples. We eliminate the 
influence of the finite length of the hot wire by the measurement of the temperature 
evaluation in the center of the sample. We consider that the influence of the accuracy of 
the measurement on these effects is in our case negligible.  

All the A and B Type components of the uncertainty are considered to be 
independent. Using the law of uncertainty propagation (Eq. 1) we can assure the 
combined standard uncertainty of the thermal conductivity better than 3.3 %.   
 
7 Conclusion 
 
The study presents the uncertainty analysis of the thermal conductivity measurement 
using the transient hot wire method. The performed series of test measurements on the 
plastic sample BRALEN SA 200-22 on air at room temperature show that the combined 
standard uncertainty of the thermal conductivity measurement is better than 3.3 % 
within 68 % confidence level.  
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Abstract  
 

We assume constant and homogenous thermal properties characterizing our physical 
system. In this case we can define boundary conditions modelling a time dependent 
source, acting on the boundary with a non-perfect thermal contact between two massive 
layers. We show below that some assumptions about the entropy of the boundary (an 
ultra-thin layer in real a case) give the third kind of Dirichlet’s boundary conditions in 
the form ( ) ( ) ( )[ ] ( )tVtTtThtTk x =−+∂ +

+
−

−
−

−− ,0,0,0 $ . After combining several ultra-thin 
layers the structure of the function ( )tV  may be very complicated. In any case the 
integrated heat-source ( )tV  consists of linear combinations of heat-sources acting on 
individual ultra-thin layers only. 
 
Key words: layered structures, thermal contact resistance, heat source on a boundary  
 
1 Introduction  
 
Let us have a system of plan-parallel slides (infinitely extended in directions of planes). 
The thermal characteristics inside of any slide are constant and homogenous (such 
thermal conductivity, thermal diffusivity, etc.). We consider a system with three layers 
indexed by 1, 2 and 3 (thermal properties of layers are indexed accordingly to the 
slides). The boundary between layers k and l is indexed as kl (k,l¸= 1, 2, 3) and are 
considered to be constant and homogenous too. 

In this case we can write the equations of the heat transfer through the system in the 
form  

( ) ( ) ( ) 0,,, 11 =+∂−∂ −− txgktxTtxT jjjtjjxx α , 3,2,1=j , (1) 

( ) ( ) ( )[ ] 0,,, 1,11,
1

1, =−+∂ +
++

−
+

−
+ txTtxTtxTkh jjjjjjjxjjj , 2,1=j  and (2) 

( ) ( ) 0,, 1,111, =∂−∂ +
+++

−
+ txTktxTk jjjxjjjjxj , 2,1=j , (3) 

with initial conditions 

( ) ( )xFxT jj ≡0, , 3,2,1=j . (4) 
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Here ( )txT ,.  denotes temperature, ( )txg ,.  heat source, .α  thermal diffusivity, .k  
thermal conductivity and .,.h  heat-transfer coefficient. We use the abbreviation 

( ) ( ) ( ) ( ) ( )0,limlim
00

>−≡+≡
→

−

→

+ εεξξεξξ
εε

LLLL
defdef

and , (5) 

for any form L.  
In some cases, it is possible to describe the modelling of non-trivial thermal 

properties on the boundaries between two adjoining layers in one-dimensional multi-
layer system.  

 
Fig 1 Ultra-thin layer bounded by two massive layers. 

 
One of the most straightforward methods of modelling nontrivial thermal properties 

of a boundary is the modelling shown by Landau [1]. Landau assumed zero initial 
temperature in all layers ( ( ) 0≡xFj ) and perfect heat conduction between the layers 

( 2,1,01
1, ==−

+ jh jj ). He considered layer 2 with thickness 1223 xxl −≡  and with heat 
source ( )txg ,2  acting on it.  In case 0→l  the influence of the layer 2 is reduced to new 
boundary conditions between layer 1 and 3  

( ) ( ) 0,, 133131 =− +− txTtxT , (6) 

( ) ( ) ( ) ( )∫
+

→

+− ≡=∂−∂
lx

x
l

def

xx txgdxtgtxTktxTk
12

12

,lim,, 2
0

213331311 . (7) 

It is easy to see that the boundary conditions  

( ) ( ) ( ) ( ) ( ) ( )tftxTtxTktftxTtxTk jjjjjjjjxjjjjjjjjjxj 1,1,11,111,1,1, ,,,,, +
+

++
+

++++
−

+
−

+ =+∂=+∂  (8) 

used by Özisik is the same as (6) and (7), where f represents the heat source acting on 
the boundary j,j+1. Özisik considered (as in [1] too) the 01

1, =−
+jjh  cases only. 

 
2 One simple nontrivial case 
 

We consider a multi-layer system with 3 layers described in Introduction. Let us have 
nontrivial conductivity properties ie. 

 0and0 1
23

1
12 ≠≠ −− hh . (9) 
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Remark 1 We assume, that ( ) ( ) ( )+
∞ ×∈ RICtxgtxT jjj ,,,  and ( ) ( )jj ICxF ∞∈ 0 , where 

( )1,,1 , +−≡ jjjjj xxI , ( )∞≡+ ,0R  and ( )IC ∞  is the set of functions with continuous 

derivatives of all order on the set I. We denote ( )IC ∞
0  all functions from ( )IC ∞  which 

have a compact support on the set I.  
These properties of ( ).,T  are not real restrictions from the physical point of view. 

We can extend all our conclusions of ( ).,T -s to the domain of appropriate closed 

differential form. This domain is a subset of the closure ( ) ( )ILIC 2=∞ . ■ 

Integrating the equation (1) for the middle layer (j = 2) on the interval 2312 , xx  we 
obtain (for a given time t > 0) 

( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) 0,,,

,,,

0

2
1

22
1

2232122

2
1

22
1

22

23

12

=∂−+∂+−∂=

=+∂−∂

∫

∫

−−−+

−−

l

txx

x

x

txx

txTdxtgktxTtxT

txgktxTtxTdx

α

α
 (10) 

where 012 =x . 
Combining the equations (3) for j = 1 and j = 2 with (10) we find 

( ) ( ) ( ) ( )∫ ∂−=∂−∂ −+−
l

txx txTdxktgtxTktxTk
0

2
1

22223331211 ,,, α . (11) 

Equation (2), for j = 2 gets replaced by 

( ) ( ) ( )[ ] 0,,, 2332322333
1

23 =−−∂ +−+− txTtxTtxTkh x , (12) 

and combining with  (2) for j = 1 we obtain 

( ) ( ) ( ) ( )[ ] ( ) ( )txTtxTtxTtxTtxTkhtxTkh xx ,,,,,, 2321222331212333
1

231211
1

12
−++−+−−− −=−+∂+∂ . (13) 

Using (11) it is easy to see that we can rewrite (13) as 

( ) ( ) ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]txTtxThtxTdxkhtgh

txTtxThtxTktxTk
l

t

xx

,,,~~

,,,,

23212213
0

2
1

2213213

2331211323331211

−+−

+−+−

−+∂−

=−+∂+∂

∫α
 (14) 

where 

( ) ( )1
23

1
122

1
13

1
23

1
122

11
13

~ −−−−− +−=+= hhhhhh and . (15) 

We express the simplest nontrivial case using the conditions 

( ) ( )[ ] 0,lim
0

2
1

2202 =








∂≡∆ ∫−

→

−
l

tl

def
txTdxkt α  for 0>t , and (16) 

( ) ( ) ( )[ ]{ } 0,,lim 2321221302 =−≡∆ −+

→

+ txTtxTht
l

def
 for 0>t . (17) 
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Remark 2 Temperature ( )txT ,2  depends on l as well and the answer to the question of 
existence of these limits is complicated in a general case. From a physical point of view 
equation (16) becomes true if sources jg  (j = 1,2,3) vary slowly in time so that the 
relaxation period in the super-thin layer (layer 2) is negligibly small in comparison with 
changes of the heat source.  ■ 

Using our assumption in Remark 1 that ( ) ( )+
∞ ×∈ RlCtxT ,0,2  for any l there exists 

some ll ,0∈ξ  for which  

( ) ( ) ( )tTltTdxtxTdx lt

l

lt

l

t ,,, 2

0

2

0

2 ξξ ∂=∂=∂ ∫∫ . (18) 

Now, we can write 

( ) ( ){ }tTlkt lt
l

,lim 2
0

1
222 ξα ∂=∆

→

−− . (19) 

Remark 3 In (18) and (19) lξ  depends on l, therefore the identity ( ) 02 ≡∆− t  may be 
false in general. ■ 

Now look at the equation (17). There is physical reason for the validity of (17). For 
an individual atom it is not correct to define properties such as temperature. We cannot 
define left hand side or right hand side temperature for one atom. Therefore the limit in 
(17) has no good interpretation for a layer with thickness of an atom.  

On the other hand, this layer may consist a macroscopic set of atoms. This mass of 
atoms may cumulate heat and has well-defined entropy. This gives a possibility to 
introduce the temperature for this layer with thickness of one atom unambiguously. This 
is the only temperature with what one can characterize the layer. No left or right hand 
side temperatures there exist. 

Therefore we write 

( ) ( ){ } ( ) 0and,,0lim 222
0

≡∆− +

→
ttlTtT

l
. (20) 

Therefore we can rewrite the boundary conditions (11) and (14) into the relation 
joining the layers 1 and 3 immediately 

( ) ( ) ( )tGtTktTk xx 23311 ,0,0 =∂−∂ +− ,  0>t  (21) 

( ) ( ) ( ) ( )[ ] ( )tGhtTtTtTkhtTkh xx 2
1

133133
1

1311
1

13

~
,0,0,0,0 −+−+−−− =−+∂+∂ ,  0>t , (22) 

where is 

( ) ( ) ( )ttgtG
def

−∆−≡ 222 . (23) 

The more symmetric form of these boundary conditions (similar to the Özisik kind of 
boundary conditions) is 

( ) ( ) ( )[ ] ( )tGhtTtTtTkh x 2
1

233111
1

13 ,0,0,0 −+−−− =−+∂  (24) 

( ) ( ) ( )[ ] ( )tGhtTtTtTkh x 2
1

123133
1

13 ,0,0,0 −+−+− −=−+∂  (25) 
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Remark 4 The modified source ( )tG 2  consists of two parts. The first one described by 
the classical heat source ( )tg2  acting on the system; and a second one characterized by 
the heat accumulation properties of the ultra-slim layer 2. ■ 
 
3 Combining simple nontrivial cases 
 

In this section we construct the final form of the modelling of the ultra-thin layer. We 
assume 5 layers, where layer 2 and 4 are ultra-thin, and layer 3 is free of any heat 
source, i.e. ( ) 0,3 ≡txg . (26) 

After some simple calculations we obtain 

( ) ( ) ( )[ ] ( ) ( ) ( )tGhtGhhhhhtTtTtTkh x 4
1

452
1

35
1

12
1

23
1

15133111
1

15 ,0,0,0 −−−−−+−−− −+=−+∂ , (27) 

( ) ( ) ( )[ ] ( ) ( ) ( )tGhhhhhtGhtTtTtTkh x 4
1

34
1

15
1

45
1

13352
1

125355
1

15 ,0,0,0 −−−−−+−−− −+−=−+∂ . (28) 

where  

( ) 1
35

1
13

1
15

1
45

1
342

11
35 and −−−−−− +=+= hhhhhh  (29) 

and ( )tG 4  is defined on layer 4 similarly as ( )tG 2  on layer 2. The result does not 

depending on the dimension ( )23343 xxl
def

−≡  and we can calculate the limit 03 →l  
easily. 

It is easy to see, that the right hand side of  (27) and (28) are linearly independent. 
We obtained the most general form of boundary conditions deduced from the simple 
case 

( ) ( ) ( )[ ] ( )tVtTtThtTk x =−+∂ +
+

−
−

−
−− ,0,0,0 $ ,  0>t  (30) 

( ) ( ) ( )tWtTktTk xx =∂−∂ +
++

−
−− ,0,0 ,  0>t . (31) 

where the sign “–” respectively “+” signed the “left hand side” respectively “right hand 
side” of the boundary. The functions ( )tV  and ( )tW  are one’s like (with respect the 
Remark 1). Combining more ultra-thin layers into the ultra-thin system will not change 
the structure of  (30) and (31). From (27) and (28) it is easy to see, that ( )tV  and ( )tW  
represent some linear combination of elementary heat-sources ( )tgn  acting on 
individual ultra-thin layers only. 
 
4 Conclusion 
 
A physically important case has been presented here. Source acting on a boundary with 
nontrivial thermal parameters generates more general boundary conditions for thermal 
conductivity. Our meaning of nontrivial thermal parameters on boundary is non-perfect 
thermal contact between two layers. 

The general structures of boundary conditions lead us to non-continuous 
temperatures on the boundary. This is similar to the situation presented in (7), where the 
continuity of x-derivative of the temperature is broken. 
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This is not critical in the sense that the differential form (1) has a closure. Boundary 
conditions (7), (30) and (31) present limit cases of real physical situations only. They 
are unique and well defined in the sense of closed differential form (1). We can use 
them safely reflecting to the Remark 1. 
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Abstract 
 
A new vertical difference dilatometer has been developed for the temperature region of 
20 – 1000 °C. This dilatometer is constructed from alumina rods passing through an 
oven. A difference transformer acting as a linear displacement transducer is on one side 
of the rods, and a zeroing screw is on the opposite side. The dilatometer  is calibrated by 
sapphire etalon. The dilatometer’s sensitivity is around 1.10-7 m.  
 
 
1 Introduction 
 
Linear thermal expansion coefficient (LTEC) α is an important performance property of 
a material. Thermal expansion of the sample is, in general, influenced by structure, 
chemical composition of the material and temperature. An experimental study of the 
influence of the temperature on thermal expansion (called thermodilatometry) records 
the changes of the structure on a dilatometric curve [1, 2]. For more complex 
understanding of these changes it is useful to combine thermodilatometry with a 
measurement of further physical parameters [3].  

Linear thermal expansion coefficient (LTEC) α is introduced by a definition 
 

dt
dl

l0

1=α    , (1) 

 
where l0 is an initial length of the sample, and dt is a sufficiently short temperature 
interval. In practice it is 1 – 5 °C [2]. As it follows from Eq. (1), the LTEC cannot be 
measured at one temperature but a temperature interval must be taken. Then LTEC can 
be calculated for such interval 
 

12

12

1
21

1
tt
ll

l −
−

=−α    ,  t2 > t1   , (2) 

 
where l1 , l2  is the length of the sample at the temperature t1 , t2 respectively.   

Absolute or relative methods are used for experimental determination of the relative 
thermal expansion 1/ ll∆  (RTE). The principle of the absolute method is based on a 
direct measurement of the position of the sample ends. It needs optical apparatus, 
mostly an interferometer, for solving this task [2]. Relative methods are, in fact, 
differential methods and usually compare the RTE of the measured sample to the RTE 
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of the sample made from a reference material. Commonly used reference materials are 
silica glass (for t < 800 °C) and alumina (for higher temperatures) [1, 2].  
 

Let us assume that the initial length of both samples is identical at the room 
temperature t0 and an output signal of the linear displacement pickup ∆p is set to zero. 
The value of ∆p is a function of the difference between the sum of lengths of the sample 
lx and the piston l1 on the one side, and the sum of lengths of the reference sample lr and 
rod l2 on the other side  
 

0)()( 21 =∆=+−+ pllll rx  . (3) 
 
At the temperature t we have 
 

0)]()[()]()[( 2211 ≠∆=∆++∆+−∆++∆+ pllllllll rrxx   , (4) 
 
where ∆l1, ∆lx, ∆l2, ∆lr, are expansions of the piston, the measured sample, the rod and 
the reference sample respectively. The piston and the rod are made from the same 
material, and their lengths at the temperature of t0 can be considered equal. Then l1 = l2 
and ∆l1 = ∆l2. Because the initial lengths of both samples were the same, we can rewrite 
Eq. (4) as 
 

pll rx ∆=∆−∆   .  (5) 
 

This equation is suitable only for an ideal dilatometer which keeps ∆p = 0 over the 
used temperature course if two reference samples are in the dilatometric cell. In such a 
case the transducer usually gives a non-zero output signal ∆p0,  which must be subtracted 
from ∆p. We can determine the RTE from equation 
 

00

0

0 l
l

l
pp

l
l rx ∆

+
∆−∆

=
∆

   ,  (6) 

 
where l0 is the initial length of the sample at the temperature t0. The value ∆p is 
measured, the function ∆p0(t) is previously experimentaly determinated, and 
the function ∆lr/l0(t) is known.  

 
To complete the Thermophysical Laboratory at Constantine the Philosopher 

University, a new simple, low-cost differential dilatometer was designed and 
constructed. This dilatometer is described below.  

 
2   Dilatometer 
 

The dilatometric system is designed from aluminum rods (Degussa, Germany). Both 
ends of four rods are firmly attached to duraluminium blocks. This supporting 
construction is vertically oriented. The differential induction transducer (INPOS, CR), 
which measures the linear displacement, is fixed to the upper block. The transformer 
core is not fixed and freely passes trough the coils of the transformer. The core is in a 
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mechanical contact with the upper end of the piston of the dilatometer. The supporting 
rod is inserted in the lower block. This supporting rod lies on the zeroing screw. The 
measured sample is put between the piston and supporting rod. The piston and the 
supporting rod are also made from aluminum rods. The scheme of the dilatometric 
system is shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 – Construction of the dilatometer. T – transducer, AH – aluminium holders, P – 
piston, S – sample, SR – supporting rod, AR – alumina rods, ZS – zeroing screw,  
O - oven 
 

The zeroing screw carries the supporting rod, the sample, the piston and the 
transformer core. The whole system can be moved in a vertical direction with help of 
the zeroing screw, performing rough zero setting. A wide shift of the zero screw permits 
to use samples with a length of 18 – 22 mm. The fine set of zero can be reached with a 
complementary electrical scheme on the output of the transducer.  

The dilatometric system is combined with an oven made from porous alumina bricks 
(Alporit, CR) and SiC heating rods (Silit, Germany). Six heating rods are connected in 
series and supplied from the autotransformer. A secondary current is controlled by a 
temperature PI programmer. Temperature is measured by a chromel – alumel 
thermocouple in proximity of the sample. The oven is in an aluminum enclosure. 

The dilatometer is connected to a computer, which performs the following functions:  
a) control of the temperature regime, b) measurement and acquisition of the output 

signal of the transducer, c) measurement and acquisition of the temperature, d) plotting 
the dilatometric curve during the experiment.  
 
3 Results 
 
 As it follows from Eq. (6), the dependence of the RTE of the reference sample (made 
from aluminum rod in our case) on the temperature has to be known. To calculate the 
RTE we need to know the temperature relationship of the zero signal ∆p0. This 
relationship can be experimentally  found with the help of the sample made from 
alumina rod. Another way, which we used to correct the transducer output signal, is 
measuring the sapphire etalon sample (delivered from NII of Metrology, Leningrad, 
together with temperature dependence of RTE). The RTE of the sapphire etalon can be 
expressed by a polynomial 
  

     AR   S  P ZS  T SR   AH   P AR  AH O 
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1556.0 108.5 103 108 32631

0

−×+×+×−=∆ −−− ttt
l
l   (7) 

 
The dilatometric curve of the sapphire etalon sample obtained by our dilatometer can be 
fitted by a function  

0

529311

0

)002.0 106 109 102(
l
kttt

l
p −×+×+×−=∆ −−−    ,  (8) 

 
where k = 2.8435 mm/V is an experimentally found coefficient. From comparing Eq. 
(7) with Eq. (8) we obtain the correction function. This correction takes into account the 
“zero dilatometric curve” as well as the alumina rod correction. The corrected values of 
the RTE can be calculated using a formula 
 

( )[ ]
0

528311

0

009,0102101101
l
ktttU

l
lx +×−×+×+=∆ −−−   ,  (9) 

 
where U  is a transducer voltage output. 

As an example, a dilatometric measurement of the unfired electroceramic sample 
was carried out. The sample of the length of l0 = 20 mm and diameter of 3 mm was 
made from a mixture of quartz (25 %), kaolin (50 %) and feldspar (25 %).  The 
dilatometric curve shows that typical consequences of phase changes occurred during 
the firing of such ceramics (dehydroxylation, α→β change of quartz, creation of spinel 
phase), Fig, 2. This curve is in a good agreement with the one measured by a quartz 
differential dilatometer [3].  
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Fig 2 – Dilatometric curve of the unfired electroceramic sample. 
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Abstract  
 

The paper deals with the measurement of the thermal diffusivity using the laser flash 
methods. Here the concept and the analytical basis of the standard laser flash method as 
well as the flash method with repeated pulses are summarized. Here the experimental 
apparatus is described in details and results of the thermal diffusivity measurements on 
samples made of austenitic steel and TiAl alloys are presented and compared. 
 
Key words: thermal diffusivity, flash method, flash method with repeated pulses 
 
1 Introduction 
 
The laser flash method, proposed by Parker et al [1], has become the standard method of 
measuring the thermal diffusivity of solids. Here the front face of a plane sample 
receives a short pulse of radiant energy provided by a laser. The resulting temperature 
rise on the opposite (rear) face of the sample is measured, and the thermal diffusivity is 
computed from the temperature rise vs. time data. 

To overcome particular experimental difficulties associated with the measurement of 
poor thermal conductive materials and/or the measurement of large samples that limit an 
extension of the general use of the flash method especially in the case of an 
investigation of insulators, temperature sensitive materials, large-grain heterogeneous 
materials, measurements near the phase transition, the modification of the method – the 
flash method with repeated pulses was proposed [2,3]. In the flash method with repeated 
pulses the pulse energy is split into several consecutive (laser) pulses and applied 
periodically to the sample front face. The thermal diffusivity is estimated from the 
resulting temperature rise of the rear surface, as in the standard laser flash technique. 
 
 
2 Mathematical basis 
 
The ideal adiabatic model considers a homogeneous opaque thermally insulated slab of 
thickness e with uniform and constant thermophysical properties and the density ρ. If 
the sample front face is exposed to instantaneous heat pulses repeated with the period tp, 
analytically described by the shape φ(t) = Qδ(t - ktp); k = 0,1,..., p, with Q - the heat 
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supplied by a pulse to the unit area of the front face, δ(t) the Dirac’s function and (p+1) 
the number of pulses, the temperature T(t) at the rear face conforms the equation  

[ ]






 ∑ ∑ −ν−++

ρ
=

∞

= =1 0
)(exp)1(21)(

n

k

i
pn

n ttik
ce
QtT .  (1) 

Here t is the time, c the specific heat, a the thermal diffusivity and parameter k = 
0,1,...,p-1 when ktp ≤ t < (k+1)tp, or k = p in case of t ≥ ptp , respectively, and  

2
22

e
ann π=ν  . 

The non-ideal model that is more realistic in a wider temperature range considers 
heat transfer between the sample and its environment. Let us have a cylindrical sample 
of the radius rs, with the thickness e and the pulse shape φ(t) as in the case of the ideal 
model. If we take account of heat loss from the sample, governed by Biot numbers H0, 
He and Hr at the front, rear and radial faces, the transient temperature T(t) in the center 
of the sample rear face can be expressed in the form of Fourier series  
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with the time terms 
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and un and wm are the positive roots of equations   

( ) ( )uHHuHHu ee +=− 00
2 )tan(  , 

)()( 01 wJHwwJ r=  , 

and J0 a J1 are Bessel functions of the first kind, order 0 and 1. 
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3 Experimental apparatus 
 

The computer controlled laser flash experimental apparatus was built at the Materials 
Research Division of the Austrian Research Centre in Seibersdorf where it is regularly 
used for measurements of the thermal diffusivity of solids.  

The apparatus consists of Nd:Cr:GGG (galium-gadolinium garnet doped with 
neodymium) glass laser (BLS400, Baasel Lasertech) working at wave length λ=1.064 
µm with the justified pulse energy ~10 J.cm-2. The transient temperature is measured by 
the liquid nitrogen cooled HgCdTe infrared detector (HCT-80, Infrared Associated, 
Inc.) with preamplifier (PPA-15-DC). The detector has a time constant of about 300 ns 
and is set to detect radiation from the central square area (~4 mm2) at the sample rear 
face. The sample is supported in a horizontal position in the vacuum chamber. A short 
tantalum tube acts as the resistance heater and allows measurements in the temperature 
range from 20 up to 1900 °C. Furnace is powered by a DC current from the power 
source (TN 10-5000, Heinzinger Elektronik). The sample temperature sensor consists of 
the steel encapsulated K-type (NiCr/Ni) thermocouple of 1 mm in diameter, or spot 
welded S-type (Pt/PtRh10) thermocouple made from wires of 0,35 mm in diameter 
(Heraeus). All data acquisition and control is performed using the standard 
measurement hardware (PCI 20001C-A carrier, PCI 20002M 12bit A/D, 20003M 12bit 
D/A, PCI 20007M Timer/IO, Burr-Brown). The software is built in Borland’s C++ and 
runs on a PC under MS DOS [4].  

The apparatus is constructed in two axes as illustrated in Fig. 1. A laser is placed 
horizontally. The laser beam is reflected by a bending mirror and follows vertically 
through a glass window (BK7) into a water-cooled stainless-steel vacuum chamber. The 
vacuum is stabilized using the turbo pump (TPH 110, A. Pfeiffer Wakuumtechnik) at 
values of 10-5 Pa order. The sample holder consists of three molybdenum rods that fix 
the sample in a horizontal position in the central zone of the furnace. The construction 
allows the irradiation of the lower (front) face of the sample and the measurement of 
temperature and temperature response on the upper (rear) face of the sample. The 
detachable top of the vacuum chamber fixes the IR temperature sensor that is focused 
with CaF2 lens and mechanical iris. The chamber top contains the movable tubes that 
allow the setting and through a window the checking of the thermocouples’ position. 

The data reduction – an estimation of the thermal diffusivity consists of a least 
squares (LSQ) fitting of the theoretical curves, to the measured temperature rise vs. time 
evolution. Because we have semi-linear LSQ tasks - working expressions (1) and (2) 
linearly depend on the heat flux term Q/ρce, the algorithm described elsewhere [5,6] 
that shifts the fitting to solving a set of algebraic equations can be utilized effectively. 
The data reduction - depending on the ideal adiabatic model (equation 1), or the non-
ideal ‘heat loss’ theory (equations 2), gives the appropriate thermal diffusivity aID, or 
aHH, respectively. 
 
4 Experimental results 
 
The test measurements were performed on a sample made of austenitic steel 
X10NiCrMoTiB1515 (Nr.1.4970) the material with known thermophysical properties. 
The sample was disc shaped with 2.18 mm thick and 10 mm in diameter. The second 
test sample had a thickness e = 1.49 mm and was made from TiAl alloy. In order to 
improve the laser light absorption the front faces of the samples were blackened. All  
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Fig 1 Schematic view of the experimental apparatus (TC-thermocouple, IRD - infra-red 

detector, PA - preamplifier, L - lens, S - sample, H - heater, W - window, VCH - 
vacuum chamber, M - mirror, PS - power source, PC - personal computer, CU - 

controller unit) 
 

measurements were taken in a vacuum at 300 °C. 
Thermal diffusivity results obtained analyzing the experimental data (Fig. 5 and 6) 

measured under different measuring conditions are summarized in the Table 1 and 2. 
Relatively good agreement of thermal diffusivity values obtained utilizing the standard 
‘one-pulse’ flash method (No.1) and the flash method with repeated pulses can be seen.  
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Fig 2 Experimental temperature rise vs. time curves (material - CrNi steel,  
curves labels correspond to the notation in the Table 1) 
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Fig 3 Experimental temperature rise vs. time curves (material - TiAl alloy,  
curves labels correspond to the notation in the Table 2) 

 
Table 1 Results of themal diffusivity estimation of austenitic CrNi steel. Here f is the 

pulse frequency, tp the period and p+1 the number of pulses, aID and aHH are the 
thermal diffusivities calculated using the equation (1), or (2), respectively. 
Recommended thermal diffusivity value is aR = 4.24*10-6 m2s-1. 

 
 

Case 
f 

Hz 
tp 
s 

p+1 aID 
10-6m2s-1 

(aID -aID1) 
/aID 
% 

aHH 
10-6m2s-1 

(aHH - aR)/aR 
% 

1   1 4.69 0 4.25 0.24 
2 16 0.062 2 4.55 -2.98 4.33 2.12 
3 64 0.016 3 4.51 -3.84 4.34 2.36 
4 16 0.062 3 4.48 -4.48 4.26 0.47 
5 4 0.250 3 4.70 0.21 4.24 0 
6 16 0.062 5 4.67 -0.42 4.43 4.48 
7 4 0.250 5 5.01 6.82 4.2 -0.94 

 
 
Table 2. Results of thermal diffusivity estimation of TiAl alloy (Ti48Al). For the used 

parameters see Table 1. Recommended thermal diffusivity is aR = 5.95*10-6 m2s-1. 
 

 
Case 

f 
Hz 

tp 
s 

p+1 aID 
10-6m2s-1 

(aID -aID1) 
/aID 
% 

aHH 
10-6m2s-1 

(aHH - aR)/aR 
% 

1   1 6.16 0 5.86 -1.54 
2 100 0.01 2 6.18 0.32 5.95 0 
3 25 0.04 2 6.18 0.32 5.97 0.36 
4 100 0.01 3 6.26 1.62 6.04 1.49 
5 25 0.04 3 6.36 3.24 6.12 2.78 
6 10 0.1 3 6.44 4.54 5.93 -0.34 



88 

Any significant difference between the dispersion of the thermal diffusivity values 
estimated from ‘several pulses’ recordings and the usual dispersion of the standard ‘one 
pulse approach’ of the experimental apparatus used haven’t been observed. The shapes 
of the experimental curves and the comparison of the measured values aID and aHH 
indicate that the experimental conditions are non-ideal and the heat loss should be taken 
into account. 
 
5 Conclusion 
 

The paper shows that the laser flash method apparatus can be successfully applied to 
the measurement of thermal diffusivity using the flash methods. Experimental results 
show that the level of the thermal diffusivity measurement accuracy and reproducibility 
using the standard one-pulse flash method is comparable to the repeated pulses 
approach's flash method. 
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