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Abstract 
 
The article is dealing with study of thermal properties of fiber materials. For specific heat, 
thermal diffusivity and thermal conductivity determination the transient pulse method and 
step wise were used. The evaluation was carried with the help of mathematical apparatus used 
for study of properties of fractal structures. The results that were obtained are the same as 
results obtained by the classical methods.    
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1. Introduction 
The article is dealing with the description of the new data evaluation method. The method 
comes out of generalized relations that were designed for the study of physical properties of 
fractal structures [1, 2]. In the work it is shown that these relations are in a good agreement 
with the equations used for the description of time responses of temperature for the pulse 
input of supplied heat [3, 4, 5]. Thermal parameters (specific heat, thermal diffusivity, thermal 
conductivity) calculated by the both methods are the same.  

 
2. Theory 
In papers [1, 2] the density of fractal physical quantity )(rρ , (e.g. specific yield of the heat 
source )(0 rq  in J.m−3.s−1 for temperature field) in E - dimensional Euclidean space En (E = n) 
was defined 

 ( ) EDeKrrq −=0 , (1) 
where r is the radius of elementary quantity, K is a fractal measure  and D a fractal dimension.  
From specific yield of the heat source )(0 rq  (1) we can determine density of heat flow rate 

)(rq  (in J.m−2.s−1) and temperature )(rT ( TTq ∆−=−== λλ )graddiv(div0 q ), where λ  is 
constant thermal conductivity (in J.m−1.s−1.K-1). For radial temperature field we can write 
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By integrating of eq. (1) over volume V* = rE of E-dimensional space we can calculate the 

power of heat (in J. s−1) 
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where dV* = d(rE ) is an elementary volume of  E-dimensional space. 
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If we suppose that heat permeates through the surrounding by the constant speed then the r 
can be observed as the size of the invariant space-time vector 2222

T
rtcr −= , where 

2222
T

zyxr ++=  is the magnitude of the position vector and c is the maximum of the heat 
permeation speed (e.g. heat radiance in the vacuum, speed of light in the vacuum 
respectively).  
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where 222
0 tcr = . 

If the heat diffuses by the significantly lesser speed then the critical speed ( ctr <<T , small 
distances or long times) the terms in parenthesis can be observed as significant in the 
expansion of exponential function ( xx −≈− e1 ) and we can write then 
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If we substitute for the thermal conductivity )]2(2/[0pp +−== EDcrcac ρρλ , where cp is 
specific heat capacity after constant pressure (in J.kg−1. K-1), ρ mass density (in kg.m−3) and a 
the coefficient of thermal diffusivity of the body (in m2. s-1), and for the total heat transferred 
to the body from the heat source DEEDcDeKrQ −+−⋅−= )]2/(2[)/(2 0 π we obtain 
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resp. 
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That is the relation for fractal dimension D = 0, 1, 2 and topological dimension E = 3 
published in [3, 4, 5]. The Figure 2 
represents time-temperature depen-
dencies (according eq.7) calculated 
for spherical (D = 0), cylindrical 
(D = 1), planar (D = 2), and cubic 
(D = 3) geometry of the heat source 
(see Figure 1). The maximum 
position can be determined by the 
derivation of equation (7) with the 
time  
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It is evident from the Figure 2 and 
from the equation (8) that for D = E 
the function meets maximum for 
time ∞→t . In the other cases the 
diffusivity a can be determined from 
the time when the temperature is 
maximal  
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Figure 1 Heat flow geometry for a) plane-parallel, b)  
cylindrical and c) spherical coordinates Euclidean space  

 
Figure 2 Time dependency of the temperature response 
for the Dirac thermal pulse (for heat flow geometry from 
figure 1) calculated by eq. (6)  
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where DEfa −=  it is a coefficient that characterizes the deformation of the thermal field [5]. 
If we substitute the value of diffusivity to the equation (7) we obtain the thermal capacity:  
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thermal conductivity of the studied fractal structure respectively  
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where Tm is the maximum temperature of the response for Dirac thermal pulse.  
 
3. Experimental 
For the responses to the pulse heat the Thermophysical Transient Tester 1.02 was used. It was 
developed at Institute of Physics, Slovak Academy of Science [6]. The block diagram of 
automated measurement workstation is presented in Figure. 3. The measured sample, which 
was placed in the isothermal chamber, consisted of three parts of cylindrical shape. Between 
the first and the second part the heat source was placed (20 µm thick nickel folium in kapton, 

and radius R2 = 1, 2 or 3 cm, (see 
on Figure 4) and first of 
differentially connected thermo-
couple (NiCr-Ni). Between the 
second and third part one 
connection of differentially 
connected thermocouple (NiCr-
Ni) was placed too. The second 
connections of both 
thermocouples were placed on 
heat exchanger where the constant 
temperature was kept with the 
help of thermostat.  The reference 
temperature was measured by 
platinum resistance (Pt100Ω).  

 
Figure 3 The block scheme of measuring apparatus  

 
Figure 3 Current flow geometry: a) plane-parallel, B) point (for different ratio of length contact 
respectively) 
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Heating-up of sample was provided by rectangular long current pulse from the software 
directed source Mesit Z-YE-3T/x. The power of supplied heat was computed from the 
parameters of pulse (from the voltage U and current I) 

 IUQ = . (12) 
The changes of temperature between heat exchanger and sample were measured by 

nanovoltmeter Agilent HP4119A. PC carried the experiment control via GPIB and RS232 bus 
and software equipment created by authors. 

 
 

4. Measured samples 
Fiber glass wool is a lightweight, flexible, thermal and acoustical insulation material designed 
to provide the ultimate noise reduction. It is formed from resin-bounded borosilicate glass 
fibers. It is water and fire resistant, it has low density of combustion gas and low toxicity. It 
reduces transport of heat and sound. Its density in non-pressed state is 5 – 20 kg.m-3, thermal 
conductivity is 0.03 – 0.04 W.m-2.K-1 in 10°C [6]. 

Samples were round shaped with radius R1 = 3 cm, their thickness was changed by 
pressing in the range of h = (30 – 5) mm. In this article there are discussed results of 
measurement by pulse and by stepwise method [7]. 
 
5. Results 
The Figure 5 represents the typical 
responses of temperature for the 
unitary step of inputted power. The 
average power of the heat source was 
1.17W lasting over the whole time of 
measurement. (it is approximately 
1200s) The upper curve shows the 
temperature of the heat source; 
temperature was calculated from the 
thermal change of its resistance. Its 
temperature in the steady state 
relative to the temperature of the heat 
exchanger (measured by platinum 
resistance) is 104.7K. The second 
curve shows course of temperature at 
the surface of kapton cling film in 
which is sealed the heat source. It 
was measured by Thermocouple 1. 
Between the resistance and the 
surface of kapton cling film there 
was 0.65K difference. The third 
dependency expresses the course of 
temperature on the opposite side of 
the sample. It was measure by the 
Thermocouple 2. The difference of 
the steady state temperatures relative 
to heat source is 75.49K in this case. 
By the derivation of the temperature 
response (Figure 6) we obtain 

 
Figure 5 Thermal response of fiber sample for current 
pulse of 1.17W and duration 1200 s 

 
Figure 6 Derivation of thermal response of fiber sample 
for current pulse of 1.17W and duration 1200 s 
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temperature response for the Dirac thermal pulse. In the left part of the figure there are 
showed courses of temperature on the both sides of sample after the switching the heat source 
on. In the right part of the figure there are responses for switching the heat source off. From 
these relations the diffusivity can be calculated (according to eq.8]. Its value is presented in 
the Table 1 together with the value obtained by pulse method [7] 
 

Table I  The comparison of the results of pulse  and step-wise method 

method h (mm) ∆tm (s) ∆Tm (K) fa [5] 
(E − D)

fc [5] λ 
(W.m–1.K–1)

c 
(J.kg–1.K–1) 

a 
(m2.s–1) 

pulse 8 58.14 7.49 1.879 0.610 0.0427 3460 2.93 · 10–7

step 8 55.55 5.33 1.879 0.610 0.0414 3419 3.07 · 10–7

 
6. Conclusion 
In this article there are presented results of measurements of thermal parameters (thermal 
conductivity, specific heat and thermal diffusivity) of glass wool fibers. In the theoretical part 
there are presented equations for computing parameters of thermal systems in fractal 
structures. Obtained equations are compared with equations used for evaluation with the help 
of pulse and step-wise method [5]. By these equations the experimental values of these 
parameters were calculated. The congruence in the theory and the experimental shows, that 
suggested mathematical apparatus is suitable for study of thermal properties of structures with 
the fractal structure.  
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