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Abstract: The structure of the two-phase ceramics can be considered as two concen-
tric spheres. The inner sphere, the grain and the outer sphere, the cladding, have radii Rg , Rc 
and there material parameters are Eg , Ec (Young’s moduli), µg , µc (Poisson’s ratios) and αg , 
αc (coefficients of the linear thermal expansion). The expansion of such model during its heat-
ing can be solved as a thermoelasticity problem. If the material parameters are constant in the 
considered temperature region and if Eg ≈ Ec, µg  ≈ µc and αg ≠ αc, then the final coefficient of 
linear thermal expansion of the two phase ceramics depends only on the volume ratio of the 
grain and the cladding.  
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1 Introduction 
 

Some ceramic materials can be considered two-phase solids. For example, sintered 
quartz electrical porcelain contains quartz grains in glassy matrix [1]. We can visualize this 
structure as consisting of two concentric spheres. The inner sphere, the grain, has a radius Rg , 
and its material parameters are Eg (Young’s modulus), µg (Poisson’s ratio) and αg (coefficient 
of the linear thermal expansion). The outer sphere, the cladding, has material constants Ec , µc 
and αc and its radius is Rc. We can solve the expansion of this model during its heating as 
a thermoelasticity problem. If the temperature increase is small and inertial forces are negligi-
ble, then the temperature field and the stress field do not influence each other. We assume that 
grain and cladding materials are homogeneous and isotropic, which means that a radial ther-
mal flow occurs. We also assume that the material parameters are constant in the considered 
temperature region. 
 

The formula for the coefficient of linear thermal expansion, given the above assump-
tions, is derived in this contribution.  

 
2 Mathematical model 

It follows from the assumptions described above, that the displacement vector u has only a 
radial component ur. Deformations in a simple sphere along the spherical coordinates are [2] 
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because the radial displacement ur does not change along the tangential direction. One can see 
that deformations are only in the radial and tangential directions. We can use these results for 
a simple sphere [2]. The radial stress in the grain is 
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and tangential stress is 
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and radial component of the displacement vector is 
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The value εgf is a free deformation during the temperature change. This deformation can be 
calculated using the equation 
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thus integral in Eqs. (1), (2), (3) can be written as 
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where 0ttt −=∆  is a temperature difference between initial temperature t0 and actual tem-
perature t.  
 For the cladding we have 
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and the integral in Eqs. (4), (5), (6) is 
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Constants cg1, cg2, cc1, cc2 can be calculated from the boundary conditions. The bound-
ary conditions on the surface between the grain and cladding (r = Rg) and on the surface of 
the cladding (r = Rc) are [3] 

0)0( =rgu  ,    )()( grcgrg RuRu =  ,   )()( grcgrg RR σσ =  ,   0)( =crc Rσ  .    (7) 
Substituting Eqs. (1), (3), (4) and (6) into the boundary conditions (7) we obtain four equa-
tions 
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where we introduced abbreviated designations 
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By solving these equations we obtain the constants cg1, cg2, cc1, cc2 : 
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where we introduced the quantity 33 / cg RRv =  representing part of grain in the whole model 
volume.  
 Let us take a model with Eg ≈ Ec, µg  ≈ µc and αg ≠ αc . Then Ag = Ac = A, Bg = Bc = B 
and Dg = Dc = D.  Eq. (14) becomes  
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and from Eqs. (11) and (13) we have 
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The radial displacement ur in the grain (following from Eqs. (3), (15) and (16)) is 
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and for the radial and tangential stress we have from Eqs. (1), (2), (15) and (16) 
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which means that the grain was exposed to hydrostatic pressure. The cladding does not allow 
free expansion of the grain. 
 The radial displacement in the cladding is  
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as it follows from Eqs. (6), (15) and (16). The radial and tangential stress is 
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Eqs. (20) and (21) show that the stress on the boundary between the grain and the cladding 
does not depend on the grain radius. 
 Let us change now the model described above with a homogeneous sphere made of 
fictive material with coefficient of the linear thermal expansion αf. The size of this sphere at 
the temperature t0 is the same as the composite sphere, i.e. its radius is Rc. Both spheres are 
equivalent if their radial displacements are equal at the temperature t 
{ } { } spherefictcrspherecompcrcgrg RuRuRu ..

)()()( =+  , 

where { } spherefictcr Ru .)(  can be calculated from the equation similar to the Eq. (3) and boundary 

conditions urf(0) = 0, 0)( =crf Rσ . Then we obtain 
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and after mathematical modifications 
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In the simple case when material parameters of the grain and the cladding are the same 
except for the coefficients of linear thermal expansion, the final coefficient of linear thermal 
expansion depends only on the volume ratio of the grain and the cladding.  
 We note that Eq. (22) satisfies the extreme cases: if v = 1 (model contents only grain), 
we have gf αα =  and if v = 0 (model contents only cladding), we have cf αα = . 
 
3 Conclusions 
 

The structure of the two-phase ceramics can be considered as two concentric spheres 
model. The expansion of such model during its heating can be solved as a thermoelasticity 
problem. If the material parameters of the inner sphere and outer sphere are constant in the 
considered temperature region and if there elastic moduli and Poisson’s ratios are very close 
to each other and the coefficients of the linear thermal expansion are different, then the final 
coefficient of the linear thermal expansion depends only on the volume ratio of the inner and 
outer spheres.  
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