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Abstract 
 
This work reports on the method for measuring thermophysical properties (thermal 
conductivity and diffusivity) of materials. The theory of the dynamic plane source 
method and experimental apparatus is described. A new algorithm for sensitivity 
coefficient analysis is presented and the results are compared with those of difference 
analysis of experiment modelling. 
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1 Introduction 
 
Development of new materials and advancement of material engineering has influenced 
the development of measuring methods of their physical properties in last decades. 
Thermophysical properties belong to the most important material properties. Progress of 
the electronics and computer technology has caused transition from stationary to 
unstationary methods. Transient methods [1] are based on generation of a dynamic 
temperature field inside the specimen. The measuring process can be described as 
follows. The temperature of the specimen is stabilised and uniform. Then the dynamic 
heat flow in the form of pulse or step-wise function is generated inside the specimen. 
From the temperature response to this small disturbance the thermophysical parameters of 
the specimen can be calculated. 
 
2 Experimental  
 
The extended dynamic plane source (EDPS) method is arranged for a one-dimensional 
heat flow into a finite sample. The configuration of the experiment is obvious from 
Figure 1. The plane source (PS) disc, which simultaneously serves as the heat source and 
thermometer, is made of a nickel film covered from both sides with kapton layer. The 
heat in the form of a step-wise function is produced by the passage of the electrical 
current through a PS disc. Two identical samples in the cylindrical shape cause 
symmetrical division of the heat flow into a very good heat conducting material (heat 
sink), which provides isothermal border conditions of an experiment. This method 
appears to be useful for simultaneous determination of thermal diffusivity a and thermal 
conductivity λ of low thermally conducting materials. 
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Figure 1. The setup of the experiment.  
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Figure 2. Temperature function - temperature increase as a function of time. 
 
Figure 2 shows the theoretical temperature function which is a solution of the partial 
differential equation with boundary and initial conditions corresponding to the 
experimental arrangement. The temperature function is given by [2] 
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q is the heat current density, λ is the thermal conductivity and Θ is the characteristic time 
of the sample given by 
 
Θ = l a2 / , (3) 
 
where l is the thickness and a  the thermal diffusivity of the specimen. Parameter β 
describes the heat sink imperfection and ierfc is the error function integral [3].  
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 The principle of the method is based on fitting the theoretical temperature function 
over the experimental points. The fitting procedure is based on a linear regression [2,4]. 
The plot of experimental points Ti  versus F(Θ,ti ), calculated using equation (2), should 
be a straight line if Θ has its proper value. Equation (1) predicts a zero intercept but real 
measurements showed non zero value τ referred to the additional increase in the 
temperature of the PS disc due to its imperfections. The proper value of Θ can be found 
by using an iteration procedure so that we will change the characteristic time Θ until the 
correlation coefficient calculated from Ti  and ( )itF ,Θ  reaches its maximum. The slope 
of this straight line gives λ while the iterated Θ gives a.  
 
3 Sensitivity coefficients analysis 
 
The sensitivity coefficient is a measure of the change in temperature due to the variation 
of the estimated parameters. The sensitivity coefficient β p  is defined by [4] 
 

( )
p
tTpp ∂

∂β = , (4) 

 
where p is the parameter to be analysed and ( )tT  is the temperature function.  The fitting 
procedure does not work properly when sensitivity coefficients are low or linearly 
dependent on each other. Therefore an analysis of the sensitivity coefficients determines 
the time window in which the evaluation technique can be applied to the temperature 
response. 
 In this section we will concentrate to the investigation of the linear dependence of the 
sensitivity coefficients. As mentioned in the previous section, there are three parameters 
which values should be estimated. They are two thermophysical parameters of the 
materialλ, a and the baseline of the temperature function τ. Hence, the temperature 
function (1) can be expressed  
 

 τβπ
πλ

τλ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

∞

=1
ierfc21),,,(

n

n

at
nltaqatT  (5) 

 
and the sensitivity coefficients βa , βλ and βτ  can be calculated using the formula (4). 
Figure 3 shows the temperature function and the sensitivity coefficients βλ and βa  as a 
function of time. The third coefficient acquires constant value β ττ = . Since the 
sensitivity coefficients are functions of one variable t, the linear dependence can be 
investigated using Wronsky's determinant [5] given by the form 
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Figure 3. Temperature function ( )tT  and sensitivity coefficients βλ and βa . 
 
The sensitivity coefficients are linearly dependent when the determinant (6) is equal to 
zero. If the functions are represented by equi-spaced time series [6] the derivations can 
be estimated by the relation 
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where ∆t is the time interval between samples. Then the determinant W obtains very 
simple form 
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where c is a constant. Function (8) in the form of a time series determines the time 
interval, where the sensitivity coefficients are not linearly dependent. As seen in Figure 4 
function W acquires non zero values in the interval ( )ΘΘ,07.0 . 
 
4 Results and discussion 
 
In order to verify the theory described in the preceding section we decided to construct a 
mathematical model of the experiment. In the first stage the points were computed using 
equations (1-3). Simulating the measurement of PMMA, the following parameter values 
were used: l = 2.86 mm, q = 1053 W/m2, λ = 0.19 W/mK, a = 0.12 10-6 m2/s and β = -
0.954. The measuring error was added by rounding the temperature coordinate of the 
points to 4 valid numbers. Then the points were processed by difference analysis [7], 
which is based on fitting the theoretical temperature function (1) to the points in the time 
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interval ( )SBB ttt +, , where tB  and tS  designate the beginning and the size of the interval, 
respectively (Fig.2). If tB  is successively changed while tS  is keeping constant a series of 
parameter values are obtained. Figure 4 shows the plot of the relative differences, which 
are defined by the formula 
 

R x x
xx =

− 0  , (9) 

 
where x0 is the value put originally into the model and x is the value calculated using 
fitting procedure. If the time interval ( )SBB ttt +,  is not suitable for parameters a and λ 
estimation, the results of fitting are erroneous and relative differences are far from zero 
value. 
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Figure 4. The values of determinant W and relative differences of the parameters a (x) 
and λ (+). 

 
Figure 4 illustrates the excellent consonance between sensitivity coefficient analysis 
results, represented by the function W, and difference analysis, represented by relative 
differences of both parameters a and λ. In the interval ( )ΘΘ,07.0  determinant W 
acquires non zero values, so that the sensitivity coefficients are not linearly dependent, 
fitting procedure works properly and computed values are nearly the same as values put 
originally into the model. The lower the values of determinant W, the higher the 
scattering of computed values of thermophysical parmeters a and λ. 
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