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Abstract 
 
   This paper deals with the solution for the inverse problem of parameter estimation involving 
heat and mass transfer in capillary porous media. 
   The present parameter estimation problem is solved with the Levemberg-Marquardt algo-
rithm of minimization of the leas-squares norm, by using only temperature experimental data. 
The objective is to identify moisture diffusivity coefficient as function of moisture. The tem-
perature responses are obtained with a numerical solution of the non-linear one-dimensional 
Luikov`s equations.  
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Introduction 
 
   The phenomena of coupled heat and mass transfer in capillary porous media has been draw-
ing the attention of research groups for a long time, because of its importance in several prac-
tical applications. For the mathematical modeling of such phenomena, Luikov [1] has pro-
posed a model based on system of coupled partial differential equations, which takes into ac-
count the effects of the temperature gradient on the moisture migration. 
   The system of equations incorporates coefficients that must be determined experimentally. 
The main problem is the determination of the moisture diffusivity content measurements. Lo-
cal moisture content measurements are practically unfeasible especially for small drying ob-
jects. The objective of this paper is to determine the moisture diffusivity coefficient by appli-
cation of inverse analysis approaches. The main idea of the applied method is to take advan-
tage of the relation between the heat and moisture transport process within the drying body 
and from its surface to the surrounding media. Then, the estimation of the moisture diffusivity 
coefficient of the drying body could by performed on basis of accurate and easy-to-perform 
thermocouple temperature measurements. 
 
Mathematical model of the problem 
 
   The physical problem involves a one-dimensional convective drying experiment of capillary 
porous sample, initially at uniform temperature and uniform moisture content. One of the 
boundaries, which one is impervious to moisture, is in direct contact with heater. The other 
boundary is in contact with the dry surrounding air, thus resulting in a convection boundary 
condition for both temperature and the moisture content. 
 The governing partial differential equations, for the modelling of such physical problem, are 
derived from conservation of mass and energy flow in a 1-D element volume of porous mate-
rial by Luikov [1]. These are written as 
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where T is temperature , u is volume basic moisture content, ρ is density solid matrix, mc is 
specific heat of sample, λ is thermal conductivity of sample, mρ  is the water density, l  is la-
tent heat of vaporization, uD  is moisture transport coefficient associated to moisture content 
gradient, TD  and ua  are transport cross coefficients. 
Boundary conditions are expressed as follows 
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where )( LxTTh =∞ − represents the heat exchanged with the ambient air and )( Lxm uuh =∞ −  is 
the phase change energy term, h  is surface conductance, mh  is mass convection coefficient.   
Initial conditions are   
 

0)0,( TxT =       at     >∈< Lx ,0                                                                                       (7)  

0)0,( uxu =       at      >∈< Lx ,0                                                                                       (8) 
 
Considering the temperature range of interest in building applications, temperature depend-
ence of lime mortal cross transport coefficients is, here, neglected when compared to their 
moisture content dependence. The objective is to determine coefficient )(uDu . 
 
Direct problem 
 
The mathematical model is discretized by using the control-volume method and the interpola-
tion is realized by the central-difference scheme.  
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where Kk ,...2,1,0= refers to time step ( 0=k refers to the initial condition) and 

1,...,3,2,1 += Ii refers to spatial grid points ( 1=i  and 1+= Ii refers to the boundaries). In the 
same way, boundary conditions are put in discrete form to obtain the following expressions 
for the half volume node at the boundaries (  0=x and Lx = ) 
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Inverse procedure 
 
   For inverse problem of interested here, moisture diffusivity coefficient )(uDu  is regarded as 
the unknown quantity, but everything else in direct problem equations is known. For determin-
ing of diffusivity coefficient, we assuming that the function )(uDu  is taken as 

   )]([ exp.)( 00 uubDuD −= [2] and we consider available the transient temperature measure-
ments imY  taken at two locations )2,1( =m  within the sample. The subscript i  refers to the time 
at which the measurements are taken ),...,2,1( Ii = . The estimation methodology used is based 
on minimization of the ordinary least square norm 
 

[ ] [ ])()()( T PPP TYTYS −−=                                                                                                    (13) 
 
 here, ],...,,[ 21 NPPPP  denotes vector of unknown parameters. T)]([ PTY − is given by  

)](),...,(),[()]([ 2211 II
T TYTYTY

rrrrrr
−−−≡− PTY  

where )( ii TY
rr

−  is row vector containing the differences between the measured and estimated  
temperatures in time it .  
A version of Levenberg-Marquardt method [3] was applied for the solution of the presented pa-
rameter estimation problem. The solution for vector P is achieved using the following iterative 
procedure 
 

)]([)(])[( 11 rTrrTTrrr PTYJIJJPP −++= −+ µ                                                                 (14) 
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where J is sensitivity coefficient  
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The term Iµ  damps instabilities due to ill-conditioned character of the problem. So the matrix 

JJ T  is not required to be non-singular at the beginning of iterations and the procedure tends 
towards a slow-convergent steepest decent method. The present iterative procedure stops if the 
norm of gradient of )(PS  is sufficiently small, or if the changes in the vector of parameters 

r1r PP −+ are very small [3]. The subroutine OBCLSJ of the IMSL [4] was used in the present 
work. 
 
Results 
 
By following the same approach of reference [5], we consider the applied heat flux )(tq  to be in 
the form of a step function in time, that is,            )( 0qtq = for htt <<0  and   0      )( =tq if htt >                     
(15) 
Because the heat flux given by (15) is a piecewise constant function, the solution technique for 
direct problem needs to be sequentially for the heating period htt <<0  and then for the post-
heating period. 
Let us consider in this paper the test-case involving the following values of material properties 
for lime mortar: )(kg/m 0.2050 3

0 =ρ , (J/kgK)  38u  0.041T 950  ++=mc , 
(W/Km) 0.4u0.003T0.58 ++=λ , )(W/km 0.32  2=h , )(kg/m 104.7  23 shm ⋅= , transport cross 

coeffcients 112-78 ..m )10 . 1.72  10 . 02.3( −−− += KsuDT . We present in Table 1 results obtained 
for the estimated parameters for standard deviation maxT 01.0=σ . Normalised standard devia-
tions are computed by dividing the original standard deviations by the maximum measured 
temperature. 
 
Table1.Estimated parameters 
_______________________________________________________________________ 
            Experimental        Parameter       Start             Estimated             Normalised stand. 
_______conditions_____ ____________guess______parameter__ _______deviation___ 
            400 =q -2m W ⋅         0D              1                 3100312.1 ×                      0.0013 
              min 40 t h =             b               7                1101312.3 −×                       0.0037 
             min 60  t f =              0u               4                 1101123.3 −×                      0.0085 
----------------------------------------------------------------------------------------------------------    
 
Conclusion 
 
 Moisture diffusivity coefficient in drying process of porous material is important parameter. 
Precise determination of this experimentally is exhausting work. Presently proposed inverse 
method has shown a possibility of determining moisture diffusivity coefficient of porous ma-
terial as function moisture content, only by the temperature measurements. This result is 
agreed to the results in [2], which were determined experimentally. 
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