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Abstract  
 
The effective heat equation and the formula for the dynamic effective thermal 
conductivity and diffusivity and the dynamic effective heat capacity of the unit volume 
in heterogeneous materials are derived. 
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1 Introduction  
 
The paper is intended to interprete the effective thermal conductivity and diffusivity in 
heterogeneous materials. In the connection with the derivation of the heat equation in 
heterogeneous materials we stated that the effective thermal conductivity measured by a 
nonstationary method is different from that one measured by a stationary method. 
Similarly the effective heat capacity of the unit volume measured in an nonequlibrium 
state is different from that one measured in a equilibrium state. This fact may be a 
motivation for experimentalists to prove that. The detailed derivation of the heat 
equation describring the process of heat transport in heterogeneous materials will be 
published presently. In this paper we will use some theoretical results because the aim 
of this paper is to describe qualitativly the characteristic features of heat transport in 
heterogeneous materials. 

Heterogeneous material will be considered as the material consisting of the isotropic 
grains (granules) of different materials. Among these materials there may be also liquid 
or gaseous material (porous material). The typical representative materials of 
heterogeneous materials are composite or porous materials. The shape of grains is 
approximately of the globular form. The grains of the same material will be called a 
component. All grains of different materials are randomly distributed over the whole 
sample (random material). Due to this randomness the physical quantities of 
heterogeneous materials on the submacroscopic level (on the length scale of linear 
dimension of grains) are not only dependent on space coordinates but they are also 
random quantities. In the ideal case the physical parameters change discontinuously 
between the neighbour grains of different materials. But in the real case there is a very 
thin interlayer in which the physical parameters change continuously between two 
values of the neighbouring grains belonging to different materials. So we can assume 
that the physical parameters are a continuous function of the space coordinates.  
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Therefore, the heat equation of heterogeneous materials on the submacroscopic level 
reads 

( ) ( ) Tr
t
Tr ∇∇=
∂
∂ .rr

λγ  (1) 

where ( ) ( ) ( )rcrr p
rrr

ργ =  is the heat capacity of unit volume, ( )rrρ  is the density, ( )rcp
r  is 

the specific heat capacity at the constant pressure, ( )rrλ  is thermal conductivity, T  is 
the thermodynamic temperature. The use of phenomenological equation (1) is justified 
only in he case when the linear dimensions of grains are much larger than the mean free 
path of carriers which participate on the transport of mass, energy and charge. But on 
the other hand they have to be much smaller with respect to macroscopic linear 
dimensions The parameters as ( ) ( )rr

rr
ργ ,  and ( )r

r
λ  characterize the material on the 

submacroscopic level. However heterogeneous materials on the macroscopic level 
usually are homogeneous and isotropic, therefore, the physical parameters of 
heterogeneous materials on the macroscopic level are independent on the space 
coordinates and they will be called effective parameters. The experimentalists suppose 
that the effective thermophysical parameters can be measured by using the standard 
stationary or nonstationary methods. Generally such assumption is not correct. The 
necessary and sufficient conditions for using effective parameters in stationary regime 
are discussed in Beran’s work [1]. All standard stationary or nonstationary methods are 
based on the solution of the heat equation at the given initial and boundary conditions. 
These methods can be correctly used only in the case of homogeneous materials. The 
question arises what is that what one measures if the standard methods are used in the 
case of heterogeneous materials. For this reason it is necessary to give the interpretation 
of the effective thermophysical parameters. At first we notice how experimentalist 
measures the temperature in the case of heterogeneous materials. For example if one 
measures the temperature by a thermocouple which planary dimensions are 
0.1×0.1 mm2. The planary dimensions of the grain are 1×1µm2, then the number of 
grains which are covered by the thermocouple is104. From this fact it follows that the 
thermocouple measures the average temperature 〉〈T  of the 104 grains. Similarly the 
experimentalist measures the average heat current density 〉〈q

r
 which flows trough the 

104 grains.  
If the application of the standard methods for measuring the effective thermophysical 

parameters is justified then the Fourier’s law in the case of heterogeneous materials has 
the following form 

〉∇〈−=〉〈 Tq d
effλ

r  (2) 

where d
effλ  is the dynamic effective thermal conductivity, which is measured by the 

nonstationary standard method. In the case of the stationary standard method the 
Fourier’s law can be written in the form 

〉∇〈−=〉〈 Tq st
effλ

r  (3) 

where st
effλ  is the stationary effective thermal conductivity. The heat equation reads 

〉〈=
∂
〉∂〈 T

t
T d

eff
d
eff ∆λγ  (4) 

where d
effγ  is the dynamic effective heat capacity of the unit volume. Relations (2), (3) 

and (4) will be derived later on. The parameter d
effγ , as opposed to the equilibrium heat 
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capacity of the unit volume eq
effγ , is the transport coefficient similarly as the d

effλ . 
According to the mixing rule we can write 

( ) ∑
=

=〉〈=
n

i
piii

eq
eff ccr

1
ργγ

r
 (5) 

where 
V
Vc i

i  is the volume fraction of the thi -component, pic  is the specific heat 

capacity at the constant pressure of the 
th

i -component, iρ  is the density of the thi -
component, iV  is the volume of the thi -component, V  is the total volume. Generally 
the statistics of the structure of heterogeneous material on the submacroscopic level is 
very often unknown and only the volume fractions may be known from the 
manufacturing process. If the heterogeneous material on the macroscopic level is a 
homogeneous one it is possible to use the Assumption: The probability of the 
occupation of the certain place with the grain of the thi -component is equal to its 
volume fraction ic . 
 
2 Theory 
 
2.1 Nonstationary case 
 
One of the aims of this paper is to derive the effective heat equation and the relations for 
the dynamic and stationary effective thermal conductivity and for dynamic effective 
heat capacity of the unit volume. These relations are very important especially for 
technologists. Knowing the relations for effective parameters, it is possible to produce 
composite materials with the prescribed values of the parameters (materal “tailoring”). 

For the above-mentioned aims it is necessary at first to solve stochastic equation (1). 
To the purpose of solving equation (1) we apply the Laplace’s transformation on 
equations (1) and (4): 

( ) ( ) ( )
( ) ( ) Tra
r
rTrarTTp ~.~.,~ ∇

∇
+∇∇=−

r
r

r
rr

γ
γ0  (6) 

and 
( ) ppp TarTTp ~,~ ∆=− 0r  (7) 

where ( ) ( )
( )r
rra r

r
r

γ
λ

=  is the thermal diffusivity, d
p

p
pa

γ
λ

=  is the dynamic effective 

diffusivity, 
f
TTp
〉〈

=
~~ , d

eff
d
p fγγ = , d

eff
d
p fλλ = , f  is the free parameter independent on 

time-space coordinates. It will be determined later on. After some complicated 
calculation one obtains 
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1
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and 
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The detailed calculations will be published presently. Using the reverse transformation 
in relation (8) and (9) then one can write 

( ) ( ) p

p

p
T
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T ∇
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1

1
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and 

( ) ( ) p

p

p
T

a
arar

g
T

−
+

= rr
β

1
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Relations (8) and (9) are approximately valid in the case of weakly heterogeneity. 
With the help of relation (10) we can calculate the heat current density 
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p

p
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After averaging relation (12) one obtains 
( )
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where 
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is the dynamic effective thermal conductivity. In relation (13) we used average relation 
(10). Further it can be shown using relation (11) the following relation 
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t
T

t
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eff ∂
〉∂〈
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∂
∂

〈 γγ
r  (15) 

where 
( )
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is the dynamic effective heat capacity of the unit volume. The dynamic effective 
thermal diffusivity is expressed by the relation 

d
eff

d
eff

d
p

d
p

d
p

d
p

p f
f

a
γ
λ

γ
λ

γ
λ

=== . Considering relations (14) and (16) one can write 
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From equation (17) we calculate the pa  and introduce it into relation (14) and (16) and 

in this way we can calculate the d
effλ  and d

effγ . As it was alredy mentioned if the 
heterogeneous material on the macroscopic level is a homogeneous one the effective 
parameters are independent on space coordinates. Averaging equation (1) one obtains 
 

( ) ( ) 〉∇〈∇=〉〈 ∂
∂ Trr t
T rr

λγ .  (18) 
 

Introducing relations (13) and (15) into equation (18) we obtain equation (4). In this 
way equation (4) is justified. 
 
2.2 Stationary case 
 
In the stationary case the heat equation according to equations (1) and (4) has the form 
 

( ) 0=∇∇ Trrλ.  and 0=pT∆  (19) 
 

It can be shown, after some calculations [2] and [3], that the solution of equations (19) 
is expressed in the form 

( ) p
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With the help of equation (20) one can write 
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Averaging relation (21) one obtains 
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where 
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is the stationary effective thermal conductivity. In relation (22) we used averaged 
relation (20). Relation (23) can be written in the following form 

( )
( ) 0

1
=〉

−
+

−
〈

st
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eff
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r
g

r

λ
λλ

λλ
r

r

 (24) 

From equation (24) one can calculate the st
effλ . 
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3 Binary system 
 
3.1 Stationary case 
 
For the binary system relation (24) is expressed in the form 

0
11 2

2
2

1

1
1 =

−
+

−
+

−
+

−

st
eff

st
eff

st
eff

st
eff

st
eff

st
eff

g
c

g
c

λ
λλ

λλ

λ
λλ

λλ
 (25) 

From equation (25) we can calculate the st
effλ : 

( ) ( )
( )

( ) ( )
( ) 21

2

1221112211

112
1

12
1
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λλλλλλλλ

λ
g

g
g
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⎤
⎢
⎣

⎡
−

−−+−
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−
−−+−
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In relation (26) we used the relation 121 =+ cc . The solution of equation (25) can be 
analyzed in two limiting cases: 

• 02 =λ , then the solution of equation (25) is the following: 
If ,gc ≤1  then       0=st

effλ  (27) 

If gc >1 , then        ( )k
st
eff cc

g 11
1

1
−

−
=

λ
λ  (28) 

Where gc k =1  is the critical volume fraction (percolation threshold). For kcc 11 <  
the grains of the first component form clusters which are separated from each other 
and, therefore, a sample is thermally non-conducting ( 0=st

effλ ). At gcc k == 11  
some clusters connect themselves together and form a percolation cluster, which is 
spread out through the whole sample. From this moment st

effλ  is increasing with the 
volume fraction 1c  (relation (28)). This effect is called a percolation and at the 

kcc 11 =  the percolation phase transition takes place. 
• 01 =λ , then the solution of equation (25) is the following: 
If gc ≤2 , then        0=st

effλ  (29) 

If gc >2 , then        ( )k
st
ef cc

g 22
2

1
−

−
=

λ
λ  (30) 

Where gc k =2  is the percolation threshold. These results may be interpreted by the 
similar way as in the case 02 =λ . 
 

3.2 Nonstationary case 
 
For binary system equation (17) can be expressed in the following form 
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λ
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β
γ

β
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From equation (31) one can calculate the pa . Until now the parameters { }iβ  were 
considered as the free parameters. Now we determine them according to the percolation 
process: 
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• Let us consider the case when 02 =λ , then equation (31) after some 
arrangement has the form 

( )
( )[ ] 01

1 2211

121211

1

1 =
⎭
⎬
⎫

⎩
⎨
⎧

+
−+−

−
−

γγ
βγβγγ

γ
λ
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gggc

g
aa pp  (32) 

We put 

2

1
1 γ

γ
β = , (33) 

then equation (32) will be similar to the equation for st
effλ . Because 0>pa , then the 

solution of equation (32) is the following: 

If gc ≤1 , then 0=pa . If gc >1 , then ( )( ) ( )gc
ccg

ap −
+−

= 1
2211

1

1 γγ
λ . 

It can be shown that the dynamical effective heat capacity of the unit volume, in the 
case when the 02 =λ , is non-zero in the whole interval of the 1c  and, therefore, for the 

0=pa  the 0=d
effλ . 

• Let us consider the case when 01 =λ . If we will proceed in a similar way as in 
the case 02 =λ , we come to the equation 
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We put 

1

2
2 γ

γ
β = , (35) 

then equation (34) has the following solution 

If gc ≤2 , then 0=pa . If gc >2 , then ( )( ) ( )gc
ccg

ap −
+−

= 2
2211

2

1 γγ
λ . 

Again we can state that the dynamical heat capacity of the unit volume, in the case of 
01 =λ , is nonzero in the whole interval of 2c  and, therefore, for 0=pa , the 0=d

effλ . 
 
4 Conclusion 
 
In the conclusion we summarize all theoretical results: 
From the equation (31) we can calculate the pa  

eddap ++=
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2

 (36) 

where 
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The dynamical effective thermal conductity: 
From relations (14), (33) and (35) it can be written: 
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The dynamical effective heat capacity of the unit volume: 
From relations (16), (33) and (35) it can be written: 
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Comparing relations (26) and (37) we come to conclusion that st
eff

d
eff λλ ≠ . From relation 

(38) it is obvious that eq
eff

d
eff γγ ≠ , where 

,∑
=

=
n

i
piii

eq
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1
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where n  is the number of components. 
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