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Abstract 
 
    It is shown in which way the variational principle limits values of thermal conductivity of      
the three-phase system. The inequality (11) shows such limits. 

 
Thermal conductivity of a three-phase system 

 
    In this article we are looking for limits of thermal conductivity of a three-phase system 
which are setting by the variational principle of minimum on it. It is assumed that λ(r) - the 
molecular thermal conductivity - is determined by (1) and (2), where iλ  of each phase being 
constants. .2  ,1  ,0=i  
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T is temperature and V is the volume of the system. We see that λ(r) is the discontinuous 
function. Functional L closely connected to stationary ( 0≡∂∂ tT ) differential equation of 
thermal conductivity  
 

( )( ) 0=∇λ⋅∇ Tr                                                                                                               (3a) 
 
is determined as follows (see Appendix1) 

 
( )( )∫∫ ∇λ=Γ=
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If, the solution T0(r) of the eq. (3a) is known then value of L{T0 } = const. If the solution 

of the eq. (3a) is unknown searching for this solution means to solve variational problem 
 

0=δL                                                                                                                             (3) 
 
We introduce the mean temperature gradient G  and density of the thermal flow q as follows 
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Let us actual temperature gradient be  TT ′∇+=∇ G , where T´ is so called geometrical 
fluctuation of temperature, then the functional  L  takes the form 
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where 
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are the correlation functions of the medium. 
If the minimum of the functional L is realized by the fluctuation TTT ′ε=′′′′     and   where ε is 
nothing else but variation parameter, then the substitution of this last assumption leads to the 
condition for minimum of L (5) 
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which is fulfilled by the value of  
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(see Appendix 2). 
 

The value of L is minimum at ε  = 1 (in accordance with upper assumption, and 
TT ′=′′ in this case). The condition (8) gives us 

 
( ) min  1 2

eff =λ=⋅−==ε GL qG                                                                                     (9) 
 
However, the actual value of temperature fluctuation T ′′  which minimized the funtional 

L is unknown, for this reason the optimal value of the parameter  ε   differs from one (ε  ≠1). 
In this sense the best value of the parameter ε  is given by the relation (8). 

 
     With respect to the condition for minimum of  L 

 
( ) ( )11 ≠ε≤=ε LL                                                                                                            (10) 
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we finally obtain the inequality for thermal conductivity of  the three-phase system 
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because the term behind the minus sign (obtaining integrals) is positive. 
 

 
Conclusion 

 
We have obtained the limits for thermal conductivity of a three – phase system as 

a consequence of variational principle. The method we have used resembles to that one used 
by Prager S. [1] for effective diffusion coefficient. 

Porous building materials (bricks. concrete – and others – can be considered as two – 
phase system ; pores being the phase number 0 and building material free of pores can be 
taken for phase 1. The phase number 2 can be for example a liquid. Then one can imagine the 
three-phase system as being a certain porous building material with absorbed liquid (water). 
Possible chemical reaction as well as phase transition are not considered. 

The question arises if the functional L of the form (3b) can be identified with total 
entropy production P in the system? It cannot: at least for the reason that physical dimensions 
of both quantities are different. Dim L ≠  Dim P. This problem is discussed in work (e.g. [2] ). 
There, the case under consideration is based on the assumption for the function ( ) ( ){ }rr Tλ=λ  
which is quite different from our assumption (1) and (2). 
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Appendix 1 
 
Multiplication of the expression ( )( )T∇λ⋅∇ r  from the left hand side by T and subsequent 
integration gives 
 

( )( )∫ ∇λ⋅∇=′−
V

dVTTL  r     and we see that  ( ) ( )( ) 0 000 =∇λ⋅∇=′− ∫
V
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Accounting the relation ( ){ } ( )( ) ( )( )TTTTTT ∇λ⋅∇+∇λ⋅∇=∇λ⋅∇ rrr      one can write 
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Applying Gaussian theorem 
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If on the surface Σ of the system boundary conditions are fixed  ( )( ) constΣdTT n =∇λ∫
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Now, to solve the problem 0=δL this enables us to apply the methods of variation in problem 
with fixed boundaries. The problem is reduced to solution of  Euler`s – Ostogradsky equation 
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 Substitution into Euler`s equation gives 
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This way it was indicated that the upper mentioned principle of variation works 
One advantage of variational method is that the functional L obtains derivatives of T with 
respect to coordinates one order lower than the derivatives occurring in the stationary 
differential equation of  heat conduction.  
 
 
Appendix 2: 
 
        At this value of ε  the function L(ε ) achieves a minimum because  Lεε  (ε  ) > 0. 


