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Abstract

It is shown in which way the variational principle limits values of thermal conductivity of
the three-phase system. The inequality (11) shows such limits.

Thermal conductivity of a three-phase system

In this article we are looking for limits of thermal conductivity of a three-phase system
which are setting by the variational principle of minimum on it. It is assumed that A(r) - the
molecular thermal conductivity - is determined by (1) and (2), where A, of each phase being

constants. i =0, 1, 2.
Ar)=38,(r)x, +8,(r)x,, i=0,1,2 ,assuming A, =0, A, #A, (1)
where

2

1 r €in phase 1 1 r €in phase 2
,(r) A

0 r €in phases 0 and 2 "0 r € in phases 0 and 1

T is temperature and V'is the volume of the system. We see that A(r) is the discontinuous
function. Functional L closely connected to stationary (07/0t=0) differential equation of

thermal conductivity
V-(Mr)VT)=0 (3a)
is determined as follows (see Appendix1)

L=[Tdv =[A(r\VT) @V (3b)

If, the solution 7y(r) of the eq. (3a) is known then value of L{Tj } = const. If the solution
of the eq. (3a) is unknown searching for this solution means to solve variational problem

8L =0 3)

We introduce the mean temperature gradient G and density of the thermal flow q as follows
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G=lIVTdV (4a)
VV

q=2uG=—[MeVT aV (4b)
V

Let us actual temperature gradient be VT =G+VT', where 7" is so called geometrical
fluctuation of temperature, then the functional L takes the form

L=[MrNG+VT )V aV =VG* (A, +4,m,)+2G - [MeNTdV + [A(e N T"-VTdV  (5)
\% \%

ni:—ISi(r)dV, i=1 or 2 (6)

are the correlation functions of the medium.

If the minimum of the functional L is realized by the fluctuation 7"and 7" =¢eT' where &is
nothing else but variation parameter, then the substitution of this last assumption leads to the
condition for minimum of L (5)

oL
P L =0 (7)
which is fulfilled by the value of
-1
£ = —[j k(r)G-VT"dV} { | x(r)VT”-VT"dV} (8)
v %
(see Appendix 2).
The value of L is minimum at & = 1 (in accordance with upper assumption, and

T" =T"in this case). The condition (8) gives us
Lle=1)=- G-q=L_,G* =min 9)
However, the actual value of temperature fluctuation 77" which minimized the funtional
L is unknown, for this reason the optimal value of the parameter ¢ differs from one (¢ #1).
In this sense the best value of the parameter ¢ is given by the relation (8).

With respect to the condition for minimum of L

L(SZI)SL(Sil) (10)
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we finally obtain the inequality for thermal conductivity of the three-phase system

{G-!k(r)VT'dV} .

A <
G-G[MrVT'-VT'dV
14

< V(A*ml +A,M, )_

off = (7‘1111"'7“27]2) (11)

because the term behind the minus sign (obtaining integrals) is positive.

Conclusion

We have obtained the limits for thermal conductivity of athree — phase system as
a consequence of variational principle. The method we have used resembles to that one used
by Prager S. [1] for effective diffusion coefficient.

Porous building materials (bricks. concrete — and others — can be considered as two —
phase system ; pores being the phase number 0 and building material free of pores can be
taken for phase 1. The phase number 2 can be for example a liquid. Then one can imagine the
three-phase system as being a certain porous building material with absorbed liquid (water).
Possible chemical reaction as well as phase transition are not considered.

The question arises if the functional L of the form (3b) can be identified with total
entropy production P in the system? It cannot: at least for the reason that physical dimensions
of both quantities are different. Dim L # Dim P. This problem is discussed in work (e.g. [2] ).
There, the case under consideration is based on the assumption for the function A(r)=A{T(r)}

which is quite different from our assumption (1) and (2).
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Appendix 1

Multiplication of the expressionV-(A(r)VT) from the left hand side by 7 and subsequent
integration gives

—L'= jW (V) v and we see that -L(1)= ITOV (MrVT, )dv =0
14

14

Accounting the relation V- {TA(r)VT}=VT-(Mr)VT)+TV-(L(r)VT) one can write
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—L' = [div{TA(e)VT}dV - [VT- (MW T)aV

vV

Applying Gaussian theorem

[divitMev T} dv = § eV T-d £ = §(TMr )V T),d =

If on the surface 2 of the system boundary conditions are fixed iﬁ(T)»(r)VT ),d = = const
z
then

—L"=const—L where L=IFdV=IX(rXVT)2dV and so
v vV

SL =3[ Mr\VT) dv =3L'.
Vv

Now, to solve the problem 6L = 0 this enables us to apply the methods of variation in problem
with fixed boundaries. The problem is reduced to solution of Euler's — Ostogradsky equation

We have T(r,VT)= (e )T2 +T +T2).

Substitution into Euler's equation gives

3
22 K Alr) (ij =0 which is the equivalent of the initial eq. V-(A(r)VT)=0 .

o o

This way it was indicated that the upper mentioned principle of variation works

One advantage of variational method is that the functional L obtains derivatives of 7" with
respect to coordinates one order lower than the derivatives occurring in the stationary
differential equation of heat conduction.

Appendix 2:

At this value of ¢ the function L(&) achieves a minimum because L. (¢ ) > 0.
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