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Abstract 

The reliable analysis of heat transfer in real materials cannot avoid the information about 
their microstructure. The global computational modelling, covering both the microstruc-
tural material properties and the macrostructural behaviour of the whole specimen or even 
of the complete construction, is usually very expensive or even impossible in practice. 
This is the principal motivation for the development of the mathematical theory of ho-
mogenization, which describes the replacement of a real composite material by a fictious 
homogeneous one. The approach based on the notion of the two-scale convergence, cov-
ering the gap between the weak and the strong convergence in the case of the periodic or 
quasi-periodic material structure, seems to be useful and physically transparent not only 
for the pure heat transfer, both for the steady-state and the time-dependent ones, but also 
for its coupling with other important physical processes. However, most such multiphysi-
cal problems contain still a lot of open questions and some microstructural formulations 
seem not to be able to be homogenized easily.  
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1. Mathematical modelling of heat transfer 

Advanced materials used in engineering have typically a complicated microstructure, whose 
simple and intuitive macroscopic representation is not available. On the other side, the distri-
butions of macroscopic quantities, as temperature, strains and stresses, moisture content, con-
centrations of components or contaminants, etc., are required as final outputs of technical cal-
culations. The simultaneous numerical computations covering the scales from micro- or na-
nometers (in the case of the microstructural analysis) to meters (for the material specimen or 
even for the complete construction, typically for some building object in civil engineering) are 
usually not available: they are very expensive even for the relatively simple model problems 
and impossible for the realistic computations required by engineering and technological appli-
cations. This is the principal motivation for the development of physically transparent compu-
tational and numerical techniques of scale bridging, known as the mathematical homogeniza-
tion (despite the fact that not it all cases the limit description corresponds to quite physically 
homogeneous material properties).  

The history of intensive research in the mathematical homogenization is relatively short, be-
ing connected with the technological progress both in the development of advanced materials 
and in the computer hardware and software. Most authors start with the citation of [3] as the 
pioneering work in homogenization motivated by engineering problems; however, in the par-
ticular cases certain analogous approaches can be found in some old studies from the begin-
ning of the 20th century, namely in [39] for the one-dimensional heat propagation through a 
layered medium. In this paper, especially at the beginning, we shall pay (for simplicity) atten-
tion to the pure heat transfer in a physically isotropic domain Ω  located in the three-
dimensional Euclidean space 3R  with a (sufficiently smooth, e.g. Lipschitz) boundary ∂Ω ; 
thus the Cartesian coordinate system 1 2 3( )x x x x= , ,  is available, the classical differential op-
erators (∇ , div , ⋅  for scalar products, …) can be used and the analysis of the existence and 
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uniqueness of solution, of the convergence of sequences of approximate solutions, etc., can 
refer to the standard results from the theory of function spaces by [19], namely of the Lebes-
gue and Sobolev ones, discussed in great details in [23]; the commonly used notation of func-
tion spaces will be applied here without further explanation.  

We shall consider the boundary ∂Ω  divided into two parts, Γ  and ∗Γ , where ∗∂Ω = Γ∪Γ . 
The heat transfer is driven by the external heat flow ( )q x  on Γ  and by the internal heat 
source ( )r x  in Ω . We are seeking for the distribution of temperature ( )T x , conditioned by 
the heat conduction factor ( )xλ  on Ω , with respect to the prescribed temperature ( )T x∗  on 

∗Γ , extensible formally to Ω . The differential formulation of the problem can be then written 
as  

 div( ( ))T rλ τ ∗− ∇ + =  (1) 

on Ω  and  

 qλ ν∇ ⋅ =  (2) 

on ∂Ω , supplied with the unit normal vector ν ; the new variable T Tτ ∗= −  is introduced to 
force 0τ =  on ∗Γ . Let us remark that in general (1) and (2) (for a non-smooth τ ) should be 
understood only in a distributive sense (not very transparent for the physicists and engineers); 
nevertheless, this can be removed by the integral formulation, coming from the Green-
Ostrogradskiǐ theorem: we have to find such Vτ ∈  that  

 ( ) ( ) ( )v v r v q v Tλ τ λ ∗∇ , ∇ = , + < , > − ∇ , ∇  (3) 

holds for all v V∈ ; assuming 2 ( )r L∈ Ω , 2 ( )q L∈ Γ , 1 2 ( )T W ,
∗ ∈ Ω  and some positive bounded 

λ  on Ω  and applying the notation of scalar products  

 ( ) ( ) ( ) dx x xϕ ψ ϕ ψ
Ω

, = ∫  

for all 2 ( )Lϕ ψ, ∈ Ω  and  

 ( ) ( ) ( ) d ( )x x xϕ ψ ϕ ψ σ
Γ

, = ∫  

for all 2 ( )Lϕ ψ, ∈ Γ  (σ  means the Hausdorff surface measure), we have aa appropriate space 
of test functions  

 1 2
1 2 3{ ( ) 0 on }V v W v v v,

∗= ∈ Ω : = = = Γ .  

The solution of (3) is relatively easy and can be performed numerically by probably every 
software package for the analysis of problems of building physics, continuum mechanics and 
related fields. The main difficulty is that we do not know how to set λ  at the macroscopic 
scale to incorporate the information from the microscopic one. The naive averaging gives 
evidently bad results: e.g. the well-known result  

 
1 2

2 1 1
λ λ λ
= + ,  

valid, following [39], for a specimen of the thickness h  consisting of a large number n  of 
parallel layers of the same thickness (2 )h nε = /  where the odd and even ones have their heat 
conduction factors 1 2 1 2…λ λ λ λ, , , ,  with n →∞  (alternatively: 0ε → ) and the heat transfer is 

THERMOPHYSICS 2008 Kočovce, October 16-17, 2008

153



considered only in the direction perpendicular to such system of layers, is quite different from 
the arithmetical average  

 1 2

2
λ λλ +

= ;  

both results coincide just for 1 2λ λ= , i.e. for the a priori ideal homogeneous medium.  

The assumption on the steady-state heat transfer may be not acceptable in a lot of cases of 
practical importance. Namely in the analysis of the heat transfer in building the setting of λ  
reflects only the effect of thermal insulation, not that of (time-dependent) thermal accumula-
tion. Thus (1) has to be extended to the form  

 ( ) d iv( ( ))T T rκ τ λ τ∗ ∗+ − ∇ + =

  (4) 

with the dot convention for the partial derivative with respect to the time t  increasing from 
zero to some final time t∗ , where at least q , r  and consequently also T  are allowed to be 
functions of the time variable t ; κ  here is introduced as ( ) ( ) ( )x c x xκ ρ=  where ( )c x  is the  
heat capacity and ( )xρ  the material density on Ω . Since (2) stays formally unchanged, (3) 
converts to  

 ( ) ( ) ( ) ( ) ( )v v v r v q v T v Tκτ λ τ κ λ∗ ∗, + ∇ , ∇ = , + < , > − , − ∇ , ∇

  (5) 

for all v V∈ ; for the time interval [0 ]I t∗= ,  and the zero-valued τ  in the initial time 0t =  we 
must consider 2 2( ( ))r L I L∈ , Ω , 2 2( ( ))q L I L∈ , Γ , 2 1 2( ( ))T L I W ,

∗ ∈ , Ω  and some bounded λ  
and c  on Ω  and try to find 2 ( )L I Vτ ∈ ,  and consequently 2 1 2( ( ))T L I W ,∈ , Ω . The discussion 
concerning the identification of λ  can be then repeated for κ  (or separately for c  and ρ ), 
too.  

 
2. Classical homogenization techniques 

The first attempt to overcome the difficulty with the identification of some effective value of 
λ  can be done in the following way: we can start from the correct fine ε -scaled configura-
tion where ετ  is nothing else τ  from (3) (or alternatively (1) and (2)) with known ελ  which 
refers just to exact λ  (often considered as periodic or quasi-periodic on Ω  in practice), thus  

 ( ) ( ) ( )v v r v q v Tε ε ελ τ λ ∗∇ , ∇ = , + < , > − ∇ , ∇  , (6) 

and the aim is to find such λ  that the sequence ε ελ τ∇  from (6) converges weakly to λ τ∇  
from (3) in 2 ( )L Ω . This type of convergence, known as H -convergence in the literature, has 
found wide acceptance in the composites modelling community, for its ability to incorporate 
and estimate effective material properties from a representative unit cell, as suggested in [3]. 
The classical works [4] and [30] are commonly cited to demonstrate that such H -limits λ  of 
corresponding sequences ελ  where 0ε →  can be calculated explicitly for periodic systems, 
although their evaluation is much more complicated than in the one-dimensional case in the 
historical work [39]. However, in general the derivation of H -limits is not explicit and re-
quires to solve additional non-trivial problems; all details (including the comparison of H -, 
G - and two-scale limits, the formal mathematical existence and convergence proofs and en-
gineering applications) can be found in [7].  
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The complicated evaluation of H -limits has motivated the improvements of the concept of 
H -convergence; here we shall mention only two important directions. For the convergence of 
ελ  in the corresponding space of linear operators (or the convergence of the Green operator) 

the literature (not only for the heat transfer, but in the more general context) refers to G -
convergence (cf. [32] and [9])). The convergence of the triples ( )ε ε ε ελ τ τ τ∇ ,∇ ,  is known as 
Γ -convergence (cf. [24], [10] and [8]). Nevertheless, in such classification the announced 
two-scale convergence could be interpreted as a specific case of H -convergence, taking 
usually in account some (quasi-)periodicity of the solution and working with certain rather 
strange limit functions; in the following text we shall demonstrate a greater significance of the 
two-scale analysis.  

Let us remark that, namely in the last two decades, the above mentioned method have been 
generalized substantially to handle much more general problems than that formulated by (6) 
and (3); however, we shall not discuss such generalizations in details to preserve the simplici-
ty and transparency of our notations. Only for the future reference we shall rewrite (5) to the 
slightly generalized version of (6),  

                          ( ) ( ) ( ) ( ) ( )v v v r v q v T v Tε ε ε ε εεκ λ τ κ λτ ∗ ∗, + ∇ , ∇ = , + < , > − , − ∇ , ∇



 (7) 

where not only one sequence ελ , but a couple of sequences ( )ε ελ κ,  of material characteris-
tics, coming from the fine scale, but tending to some effective ( )λ κ,  for (5), occurs.  

 
3. Two-scale convergence analysis 

The two-scale convergence was introduced originally in [26], but this pioneering work (whose 
form is not very reader-friendly) has not been accepted as an important tool in the homogeni-
zation theory immediately. Most authors, using the mathematical two-scale homogenization 
and the corresponding convergence results to the analysis of physical or technological prob-
lems, or even those trying to generalize the formal definition of a (strong or weak) two-scale 
limit, refer to the later rather extensive overview [1]; its notation will be therefore applied also 
in this paper. Some useful generalizations will be discussed later.  

Let Y  be the unit cube in 3R : [0 1) [0 1) [0 1)Y = , × , × , . This cube should correspond to certain 
representative volume (small in practice) at the fine scale; thus it would be physically more 
convenient to take some cube of a realistic volume, but according to 0ε →  the additional 
assumption vol 1Y =  brings no loss of generality and simplifies most equations. The space of 
Lebesgue square integrable Y -periodic functions will be denoted by 2 ( )#L Y . Its elements are 
Y -periodic; its restriction to Ω  belongs to 2 ( )L Ω , although its norm is constructed over Y  
only.  

Let us now introduce the two-scale convergence; ε  will be a positive real constant (every-
where in this paper). Let S  be certain space of admissible functions from 2 ( )L YΩ× . A se-
quence uε  is said to two-scale converge to a limit 0 2 ( )u L Y∈ Ω×  iff  

 0

0
lim ( ) ( ) d ( ) ( ) d d

Y
u x x x x u x y x y y xε

ε
ϕ ε ϕ

Ω Ω→
, / = , ,∫ ∫ ∫  (8) 

for all Sϕ∈ . The choice of S  by various authors is different; for our purpose 
2( ( ))#S C L Y= Ω,  will be sufficient. Let us remark that the seemingly simplest setting 
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2 ( )S L Y= Ω×  is not acceptable, unlike 2 2( ( ))#S L L Y= Ω,  (for the detailed explanation see 
[13]).  

An alternative definition can be rewritten from [2]: Let us consider the system of k -shifted 
and ε -scaled cells ( )kY Y kε ε= +  for all triples of integers 1 2 3( )k k k k= , , ; this system covers 
the whole space 3R , containing Ω . Let aε  be a measure preserving mapping of YΩ×  onto 
Ω  defined by ( )a y kε ε= +  for kx Y ε∈  if kY ε  is included in Ω  (i.e. contained in inner cells) 
and as a xε =  for kx Y ε∈ ∩Ω  (i.e. contained in boundary cells). Let Aε  be a transform of 

2 2( ( ))#L L YΩ,  into 2 ( )L YΩ×  defined by  

 ( )( ) ( ( ))A v x y v a x yε ε ε ε, = ,  

for any sequence vε  in 2 ( )L Ω . A sequence uε  is said to weakly two-scale converge to a limit 
0 2 ( )u L Y∈ Ω×  iff A uε ε  weakly converges to 2 ( )L YΩ× . A sequence uε  is said to strongly 

two-scale converge to a limit 0 2 ( )u L Y∈ Ω×  iff A uε ε  strongly converges to 2 ( )L YΩ× .  

As verified in [25], the weak two-scale convergence can be identified with the two-scale con-
vergence by (8). The strong two-scale convergence can be characterized as the (weak) two-
scale convergence with the additional requirement  

 2 2

0

( ) ( )0
lim

L L Y
u uε

ε Ω Ω×→
= .  

The most useful lemmas working with the two-scale convergence with 0ε →  are:  

On the compactness: If uε  is a bounded sequence in 2 ( )L Ω  then, up to a subsequence, uε  
two-scale converges to some 0u  in 2 ( )L YΩ×   

On the function products: If uε  is a strongly two-scale converging sequence to some 
0 2 ( )u L Y∈ Ω×  and vε  is a two-scale converging sequence to some 0 2 ( )v L Y∈ Ω×  then  

 0 0( ) ( ) d ( ) ( ) d d
Y

u x v x x u x y v x y y xε ε

Ω Ω
= , , .∫ ∫ ∫  

On the weak and strong convergence: If uε  is a strongly converging sequence to some u  in 
2 ( )L Ω  then also uε  strongly two-scale converges to u∗  in 2 ( )L YΩ×  where ( ) ( )u x y u x∗ , =  

for every x∈Ω  and y Y∈  If at least uε  is a two-scale converging sequence to some 0u  in 
2 ( )L YΩ×  then uε  weakly converges to u  in 2 ( )L Ω  where  

 0( ) ( ) d
Y

u x u x y y= ,∫  

for each x∈Ω .  

On the gradients: If uε  is a bounded sequence in 2 ( )L Ω  and moreover uε∇  is bounded in 
2 3( )L RΩ,  then, up to subsequences, uε  has certain two-scale limit in u∗  in 2 ( )L YΩ× , whose 

restriction u  to 2 ( )L YΩ×  comes from the preceding lemma, and also uε∇  has a (vector-
valued) two-scale limit 1

yu u∗∇ +∇  where the gradient y∇  is computed with respect to the 

second variable y Y∈  and 1u  is certain element of 2 1 2( ( ))#L W Y,Ω, .  

The careful application of these lemmas enables us to understand (3) as the two-scale limit 
version of (6) and verify the existence of an effective λ  on Ω  for a sequence of quasi-
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periodic heat conduction factors ελ  defined by  

 ( ) ( )x x xελ λ ε= , /  

for all x∈Ω . Moreover, the strong convergence in 2 ( )L YΩ×  can be helpful, too (especially 
later in the numerical analysis). However, the guaranteed solution of (3) τ  contains its oscil-
latory part 1τ  (cf. the lemma on the gradients), periodic on Y . The meaning of 1τ  is often 
explained using the formal asymptotic expansion (see [1])  

 0 1 2 2( )( ) ( ) ( ) ( )x x x x x x x x …ετ τ ε ετ ε ε τ ε= , / + , / + , / + ,  

taking only first two right-hand-side additive terms with 0τ  and 1τ  into account. This leads 
naturally to the suggestion to include more terms into consideration; such approach, known as 
reiterated homogenization, has its good support inside the two-scale analysis.  

 
4. Useful generalizations 

The generalization of the above introduced two-scale analysis is available in several direc-
tions. Some small improvements are clear and simple: e.g. the isotropy assumption can be 
easily removed, replacing the scalar factor λ  by certain symmetrical matrix from 3 3R × , q can 
contain a τ -variable term, incorporating the heat convection from the environment (or from 
the adjacent layer), etc. It is also possible to admit that λ  is a function of T  or even to replace 
λ τ∇  totally by some function  

 ( ( ) ( ))l x x xτ τ, ,∇ ,  

respecting some additional requirements, e.g. of the Carathéodory type, and replace also the 
spaces 2 ( )L Ω , 2 ( )L Γ , 1 2 ( )W , Ω , etc., by the slightly generalized spaces ( )pL Ω , ( )pL Γ , 

1 ( )pW , Ω , etc., with 1 p< < ∞ . More serious complications can be connected with the perfo-
rated domains (let us remind that most building materials have a non-negligible pore space) 
and with the materials containing stiffening thin plates or long fibers located in the matrix: the 
analysis of such problems requires to substitute the standard Lebesgue and Sobolev spaces by 
some more general spaces working with the generalized Borel, Young, etc. measures; for 
more information see [13], [5] and [20]. However, the strong and relatively simple results like 
[6] cannot be then expected. This is caused by the loss of (quasi-)linearity of the problem and 
by the absence of the standard compactness arguments from the theory of Hilbert (or at least 
reflexive Banach) spaces; for more details and references see [37].  

Another very useful generalization is the passage from the steady-state heat transfer to the 
analysis of the time-variable redistribution of temperature, from the mathematical point of 
view from an elliptic to a parabolic problem. The theoretical two-scale convergence results 
are available from [16] (even admitting the time-scaled changes of material characteristics); 
this enables us the passage from (6) and (3) to (7) and (5). The construction of the solution of 
a parabolic problem from a sequence of approximate solutions of corresponding elliptic prob-
lems, based on the method of discretization time and applying the properties of sequences of 
Rothe, is demonstrated in [35].  

Unfortunately, also the periodicity assumption may be far from realistic ones; that the regular 
location of particles in the material can predict quite other outputs than their stochastic distri-
butions. This is an important motivation for the development of the two-scale analysis without 
the deterministic periodicity. We have seen the incorrect results of the naive avaraging just in 
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the very simple case of one-dimensional heat propagation; the more complicated anisotropic 
configurations then need the support of advanced correlation analysis (see [18]). The ap-
proach of [17] and [31] tries to solve the sketched problem in the compatible way with the 
standard notations in the Lebesgue and Sobolev spaces, replacing the Lebesgue, Hausdorff, 
etc. measures by the probabilistic ones, applying the arguments from the theory of stochastic 
processes. Another method is presented in [27]: using the basic concept, called homogeniza-
tion structure, and the deep results from the theory of Banach algebras, the so-called Σ -
convergence promises to handle all known non-periodic formulations, including the probabil-
istic one (via the Radon measures and the Gelfand representations of special algebras). This 
concept evidently involves the two-scale convergence as a very special case; however, its 
application to most non-periodic engineering problems is not quite transparent and the whole 
text expects the very experienced reader, familiar with the methods and results from various 
branches of pure and applied mathematics; this may be the reason why e.g. the latest mono-
graph on multiscale methods [28] ignores these results at all.  

Moreover, the coupling of the heat transfer with other physical processes brings still new 
problems. Especially the complex analysis of heat, air and moisture propagation (the so-called 
HAM modelling, possibly accompanied with some contaminant) in buildings, based on the 
classical thermodynamical principles, namely on the conservation of mass, inertia and energy, 
leads, even in the case of a priori known macroscopic material characteristics, to some ma-
thematical problems, whose solvability is not clear; for the more proper overview see [38]. 
The same is true e.g. for the hygro-thermo-mechanical modelling of the early-age concrete, 
conditioning all later mechanical properties and the durability of the whole structure, dis-
cussed in [14]. Typically the treatment of such complicated problems uses various semi-
empirical ad hoc simplifications beyond the scope of this paper.  

 
5. Numerical treatment 

The number of papers presenting the computational algorithms and the results from the soft-
ware applications performing the modelling and simulation of engineering problems is much 
higher than the proper mathematical and physical studies, referenced in this paper. The very 
frequent engineering approach consists of some experimental computations at various scales, 
applying rather artificial boundary conditions to commercial software packages, composed by 
the classical least squares method. Their (more or less strange) result generate good argu-
ments for the minority of critical opinions like [12]: “it begins with naive euphoria” and con-
sequently there is an “overreaction to ideas that are not fully developed, and this inevitably 
leads to a crash”.  

Omitting the ad hoc computations with no or weak theoretical support, we must notice some 
studies of the two- or more-scale techniques, namely in the finite element method (but also 
e.g. in the finite volume or finite difference methods or their various combinations). Some of 
them do not apply any proper homogenization, being concentrated to the analysis of the (pos-
sibly parallelized) computations on two or more not necessarily nested grids. A very useful 
iterative algorithm, based on the improved Schwarz-Cauchy inequality, has been suggested in 
[15]; as shown in [36], it can be adopted also to the finite element analysis of linear problems 
incorporating the two-scale approach, i.e. to the formulations like (6) and (3). The four crucial 
steps of this algorithm (in the very simplified version) after the setting of the first estimate 0τ∗  
of τ  are:  

1. find such Vε ετ ∈  that  
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 0( ) ( ) ( ) ( )v v f v q v T vε ε ε ε ε ε ε ε ελ τ λ κ τ∗ ∗∇ , ∇ = , + < , > − ∇ , ∇ − ∇ , ,∇  

for all v Vε ε∈ ,  

2. set 1 2 0 ετ τ ωτ/
∗ ∗= + ,  

3. find such h hVτ ∈  that  

 1 2( ) ( ) ( ) ( )h h h h h hv v f v q v T vλ τ κ λ τ /
∗ ∗∇ , ∇ = , + < , > − ∇ , ∇ − ∇ , ∇  

for all h hv V∈ ,  

4. set 1 1 2 hτ τ ωτ/
∗ ∗= + ,  

etc. (obtaining 3 2 2 …τ τ/
∗ ∗, , , until the error is significant); here (0 2)ω∈ ,  is an appropriate re-

laxation parameter, V ε  and hV  are the finite-dimensional subspaces of V  corresponding to 
the fine scale and to the rough scale, respectively (ε  and h  can be identified with the norm of 
decomposition of Ω  to finite elements, ε  being much lesser than h , but the convergence 
analysis works with simultaneous 0ε →  and 0h →  theoretically), and the a priori knowledge 
of the effective value λ  is assumed for simplicity. If the last statement is not true then the 
construction of the approximate solution of certain non-trivial additional problem should to be 
incorporated into the algorithm; for more details see [21] and [22].  

The convergence analysis of the algorithms of the above sketched type enables us, at least for 
the linear problems, to derive convergence results comparable with those known from the 
classical finite element analysis. Some results beyond the linear formulations, both for the 
steady-state and for the time-dependent formulations, can be found in [11]; nevertheless, the 
formal verification of the existence of two-scale limits is available for a much larger class of 
problems than the convergence for such fully discretized schemes.  

 
6. Still open problems 

We have mentioned several complex problems, whose theoretical analysis seems to contain 
still more open questions than complete answers. Other typical problems of this type are those 
containing some non-local phenomena, occurring often in the simulation of the initiation and 
development of fracture, of the high-temperature phase transformation, etc. Even seemingly 
simple one-dimensional problems can lead to the results where any reasonable two-scale 
analysis is not available.  

As an example we shall present the modelling of diffusive and massive phase transformation, 
whose physical fundamentals are introduced in [33]. The evolution of q substitutional and r 
interstitial, totally 1q r− + , molar fractions c  in one dimension is characterized in a Cartesian 
coordinate x  and in time t . The coordinate x  moves from the left to the right together with 
the interface of constant thickness h  (from 0x =  to x h= ); the total size of the specimen is 
H  (in practice much greater than h ), the system is assumed to be closed (with zero boundary 
fluxes) on the interval between ( )Lx t and ( )Rx t . One missing molar fraction comes from the 
additional condition 1 1qc …c+ = . The resulting system of equations, starting from some a 
priori known initial values of c , reads  

 ( ) C CBc K vN c N vNc N j N
τ τ

×
◊ ◊′ + + − = − Ω −  (9) 
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where all variables are evaluated in time t , except ( )C C t τ× = − , τ  denotes the time interval, 
referring (for simplicity here) to the implicit Euler method (the system of differential equa-
tions can be derived from such difference ones using the limit passage 0τ → ); B , K  and N  
are square matrices of order 1q r− + , B  full, K  and N  diagonal, B  and K  depending on c , 
N  dependent on x  only, Ω  is the constant molar volume and  

 
0

( ) ( )d
x

C x t c tξ ξ, = , ,∫  (10) 

c◊  refers to molar fractions and j◊  to diffusive fluxes at 0x =  and  

 
0

1
d

q r h

i i
i

v c x
M

µ
+

=

Ω ′= ∑ ∫  (11) 

for the prescribed chemical potentials iµ  as complicated functions of c ; a prime symbol de-
notes a derivative with respect to x . The system (9) comes from the mass conservation law  

 0c vc j′ ′− +Ω =  (12) 

with  

 Nj Bc Kc′= − − ;  

another consequences of (12) are  

 ( ) ( ) 0R R RC C v c c jτ× ◊ ◊− / − − −Ω =  (13) 

and  

 ( ) ( ) 0L L LC C v c c jτ× ◊ ◊− / − − −Ω =  (14) 

where the upper indices L  and R  refer to the values at Lx  and Rx , respectively. The iterative 
computational algorithm for any time step, suggested in [34], is based on the solution of the 
system (9) with B  and K  estimated from the preceding iterative step, but with respect to the 
unknown parameters c◊  and j◊ ; v  is received by the numerical integration from (11), the 
results of numerical integration in (10) must be carefully incorporated into (9). The moving 
boundary conditions are needed for the determination of c◊  and j◊  (and consequently of c) 
from (13) and (14) in each iterative step a posteriori.  

The numerical experiments (making use of the original MATLAB- and MAPLE-based soft-
ware code) with a purely substitutional Fe-rich (q=3, r=0) Fe-Cr-Ni system (whose complete 
experimental description has been obtained from the Montanuniverität Leoben in Austria and 
from the Institute of Physics of Materials of the Academy of Sciences of the Czech Republic 
in Brno) for various fixed temperatures T  between 1020  and 1080  K show that for steady-
state simulation (neglecting c  in (12) and the corresponding terms in all remaining relations) 
predicts some positive constant velocity v  decreasing with T . However, the temperature T  
corresponding to 0v →  is not quite the same as that received for the sharp interface (assum-
ing 0h → ); this temperature has been validated indirectly by practical observations. The 
time-dependent simulation is moreover able to predict the characteristics of the whole process 
of phase transformation, including the sign changes of v  and the possible convergence 0v →  
in time. The time distributions of c  (at least after some sufficiently long time) are typically 
nearly constant from the rough view (connected with H ), but they can be recognized as ra-
ther complicated functions of x  in the fine scale (connected with h ): this seems to be also the 
reason why no reference to such other simulation software can be found in the literature.  
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The above discussed numerical calculations generate reasonable results, but their interpreta-
tion using the two-scale (or other) homogenization approach is not available: we were not 
successful to identify some size parameter with the needed 0ε →  and the derivation of some 
relatively simple limit form of our integro-differential problem cannot be expected. This may 
demonstrate certain limitations of the homogenization techniques, but also motivate their im-
provements and further development.  
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