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Abstract: 
B-spline approximation procedure applied to fitting the high thermal resolution thermophysical data is 
presented. The procedure has been used for characterisation of a 2-nd order phase transition revealed 
in dilatometric measurements of 90W-7Ni-3Fe tungsten heavy alloy (WHA).  The experiments have 
been performed applying laser interferometry apparatus. Both the coefficient of linear thermal 
expansion (CLTE) and the linear expansivity (LE) data from thermal cycling within 20 oC and 
1120 oC have been processed. As a result representative characteristics have been obtained. The 
discussed algorithm has been proved to be efficient in scattered thermophysical data processing. 
 

1. Introduction 
Almost every process of thermophysical property characterisation involves the experimental 

data processing. Usually data are processed for the purpose of introducing the appropriate 
characteristic into the appropriate database or for its thorough examination. In the first case the 
problem typically reduces to data averaging. In the second, needs of precise material diagnostics 
force more thorough examination of the experimental results. A special care is needed when the 
high thermal resolution data are handled. High thermal resolution means that a certain property is 
obtained within a very small temperature interval. Such data usually need to be approximated. 
The problem with approximation is proper selection of the functional basis. In typical cases 
theoretical indications for a certain functional dependence on the temperature are very weak [1]. 
In such situation polynomials are usually utilised. However, it was proved that due to many 
disadvantages single polynomials should be excluded from fitting high resolution 
thermophysical data [2]. Polynomials are not only badly numerically conditioned [3] but also 
proved to be inefficient in reconstruction of discontinuities of the investigated functional 
dependence [4]. On the other hand there is a broad range of possibilities connected with 
utilisation of splines [5]. Strangely enough, spline functions have rarely been used for that 
purpose despite the fact that even in a fundamental work of de Boor, titanium specific heat data 
were applied as an illustrative example of their application [4]. Splines, in that range basis splines 
(B-splines), exhibit unique features that predestine them to be used for approximation of high 
resolution thermophysical data. The most important is the possibility of almost unrestricted 
global and local reconstruction of not only the function but its derivatives as well. This particular 
feature can be effectively exploited for characterisation of materials exhibiting phase 
transition [7]. 

In this work s spline approximation of the high thermal resolution diltometric data (comp. [8]) 
from investigations of a 90W-7Ni-3Fe tungsten heavy alloy (WHA) is discussed. Tungsten 
heavy alloys are high–density dispersed composite materials in which quasi-spherical hard 
tungsten particles are embedded in a ductile matrix [8, 9]. Due to specific combination of 
mechanical properties, namely high strength and hardness together with good ductility, these 
alloys have been found increasingly applicable in nuclear and military technologies. The 
discussed studies of the thermal expansivity are comprised within the frame of a wider research 
programme on WHSs and related materials. The main purpose of the investigation is 
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characterisation of all thermophysical properties to complement the literature in that domain 
(comp. eg. [9]). The data will also be exploited in numerical modelling of selected processes of 
WHA sintering technology.  

2. B-spline Approximation 
The details concerning the theory of spline functions can be found elsewhere (comp. e.g. [4] 

and [5]). For the purpose of this work let us just summarise basic facts about splines. A spline 
function can be defined within a closed interval containing the data [Ta, Tb], where T is the 
temperature. Let { }n

i 1τ , bia TT ≤≤ τ be a nondecreasing sequence of n points called knots. Let 

{ }N
k 1ξ be a strictly increasing sequence composed of the previous one in such a way that all 

repetitions of τi are excluded. The points ξk are called breakpoints. In relation to these two 
sequences we define another sequence { }N

k 1ν  which counts repetitions of ξ k  in { }τ i
n

1
 defining 

multiplicity of knots.  
A spline of order r on [Ta, Tb] with reference to a multiple knot sequence { }τ i

n

1
 , τ τi i r< +  is 

the function Sr
τ  which [6]: 

a)  is a polynomial of order r (degree r-1) within every subinterval [ ]ξ ξk k, +1 ; 

b)  is a Cr k− −ν 1  class function at   ξk. 
In single knot subdivision case the spline is a Cr-2 class function within the whole interval 
[a, b] and a Cr-1 class function within { }[ , ]\a b k

Nξ
1

. Multiplication of knots corresponds to 
lower continuity conditions at breakpoints – if a certain knot is multiplied, then the range of 
continuity in a corresponding breakpoint is proportionally decreased. For simplicity reasons 
a knot indication in the notation of splines will be omitted throughout the article. 

The spline function Sr can be represented by piecewise polynomial (so called pp-function) of 
corresponding order r. This representation is equivalent to decomposition of a spline with 
reference to a base of truncated mononomials [4], [5]: 
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To make this formula complete we take )(lim)( TS
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= . Hence, we conclude that pp-

representation for a certain spline consists of: the integers r and N-1 giving order and number 
of its polynomial pieces, the strictly increasing sequence { }ξ k

N

1
 of its breakpoints and 

a matrix [ckm] of dimension (N-1) × r which is the matrix of its right derivatives at the 
breakpoints [5]. The mononomials for piecewise polynomial representation of a spline 
function is shown at Figure 1. 
A spline function can also be referred to another functional basis. This basis consists of 
special splines every one of which is defined on a closed support. These splines are called 
basis splines or B-splines. We can introduce B-splines of order r on a knot sequnce { }τ i

n

1
 

using a recurrence relation: 



 <≤

= +

otherwise0
1

)( 1
1,

ii
i

x
TB

ττ
 )()()( 1,1

1
1,

1
, TBTTBTtB ri

iri

ri
ri

iri

i
ri −+

++

+
−

−+ −
−

+
−

−
=

ττ
τ

ττ
τ  (2) 

For a strictly increasing knot sequence 1-st order B-spline is a constant, 2-nd order is 
composed of two pieces of a linear function, 3-rd order of three pieces of a square function, etc. 
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The formula (2) can also be applied for calculation of B-splines defined on multiple knot 
sequences. Multiplied knots are utilized whenever discontinuities of any range should be 
modeled.  

B-splines of order r create a basis within an interval [ , ]τ τr n− +1 1  for any spline Sr  in such 
a way that: 
 

   )()(
1

, TBTS
l

i
riir ∑

=

= α  (3) 

 
B-representation for Sr consists of [4]: the integers r and l, giving the order r and the number 
of linear parameters, the vector { } { } rl

i
n

i
+== 11 τττ  containing the knots and the vector { }l

i 1α=α  

of the coefficients of the spline Sr with respect to the B-spline basis { } l
riB

1, . An example of 

recurrence creation of such a basis is shown in Figure 2. The B-spline basis, contrary to 
a basis composed of mononomials, is relatively well conditioned which makes numerical 
calculations more reliable. 

The least square approximation of given data ( ){ }M
ii yT 1,  resolves itself to search the minimum 

of 
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with reference to τ  and  α  as it was described in [5]. The numbers wi are weights. For a fixed 
knot sequence τ, the minimisation simplifies to a linear least squares problem. The situation is 
different when variations of knots are admissible and one is trying to find the best placement 
of knots that will minimise the least squares error. In this case the problem (the variable knots 
problem) doesn’t usually result in one optimum unequivocal solution. 
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Figure 1. Basis for piecewise polynomial representation of a certain spline within the interval 

[52; 354] with knots at: -52, 0, 157, 200, 250 and 354 
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Figure 2. Recurrence construction of a B-spline basis: a - 1st, b – 2nd, c – 3rd and d – 4th order 

B-splines for the same knot sequence as illustrated in Fig.1  
  

 
When comparing piecewise polynomial and B-spline representation in solving the 

approximation problems one can realize that there are strong theoretical and practical indications 
for preferring the last one. B-splines are better numerically conditioned and easier in recurrence 
calculations. This makes iterative calculations easier. The B-spline basis is usually composed of 
not so many functions as in the case of pp-functions. Last but not least it should be underlined 
that there are both theoretical and practical possibilities of converting splines from B-spline to 
piecewise polynomial representation. 

Determination of the best approximation for a certain experimental data set with utilisation of 
B-splines resolves itself to the following step by step procedure: 
1.  Selection of the optimal range r of splines to be applied. 
2.  Determination of a subdivision of the interval  [Ta, Tb] comprising the data with 

simultaneous analysis (identification) of discontinuity points. This step results in definition 
of the knot sequence (initial knot sequence in a variable knot procedure). 

3. Determination of the sequence of M weights M
iw 1}{ . 

4.  Application of fixed or variable knot procedures and evaluation of results. 
5.  Possible repetition of steps 1-3 with the order r changed or the knot sequence modified. 

Usually, when variable knot procedures are applied, knots are rearranged according to the 
obtained results. When certain discontinuities are modeled then fixed knot procedure is 
preferred in final calculations. 

6.  Conversion from B-spline to piecewise polynomial representation if necessary. 
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In numerical calculations described in this paper, both fixed and variable knot procedures 
were applied. To solve a fixed knot problem, procedures established by the author were used. 
The variable knot approximation results were obtained with the use of IMSL Fortran procedures 
that are described in detail in [4].  

3. Experimental 

Laser Interferometry Dilatometer 
Dilatometric measurements were performed using an absolute laser-interferometry apparatus 

with a microcomputer system for data acquisition and processing (Figure 3). A modified 
spherical interferometer was utilised. Detailed information of the instrument and the 
methodology of measurements are given in [7]. The apparatus enables high thermal resolution 
investigations of CLTE α and linear expansion ε (LE) within a temperature range from –150 K 
to 1400 K (from about -120 oC to about 1140 oC). Specimens of various shapes can be tested. 
The actual resolution depends on many factors and affects the accuracy of CLTE determination. 
Both parameters are correlated and should be analyzed together for every individual case. Test 
measurements performed for a Cu specimen within the range from 300 to 800 had shown that 
even if the resolution ∆T ≅ 2 K was preserved, the uncertainty could be less than 1 % [7]. 
Usually the resolution ranges from 0.05 K to 2.0 K. 

The measured CLTE values are referred to the room temperature specimen 
length l0=l(t0=20 oC ) giving experimental standard values of α*(t) (comp. Figure 4.a)  

  
dt

tld
ldt

tld
tl

t )(1)(
)(

1)(*
00

==α  (5) 

where t stands for the temperature. The LE  is referred to l0 giving the dilatation denoted here 
as ε. The LE is calculated by integration of the α*(T) curve (Figure 4.b) 

   
)(

)()(
)(

0

0

tl
tltl

t
−

=ε  (6) 

The data processing is completed with “thermal extortion” diagrams, ie diagrams of the 
temperature change rate as a function of the actual temperature of the specimen (Figure 4.c).  
 

 
 

Figure 3. Schematic diagram of the experimental stand 
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Figure 4. Illustration of typical results from dilatometric investigations: a – measured values 
of the coefficient of linear thermal expansion (CLTE*) in 10⋅K-1, b – linear expansion (LE) 
i.e. dilatation in mm⋅m-1 and c – temperature rate versus the specimen temperature (thermal 

programme). The results shown are obtained at 1-st experimental cycle for the 90W-7Ni-3Fe 
specimen 

 

 
 

Figure 5. Microstructure of the investigated material: the bright particles are tungsten filler, 
the dark area is 53Ni-23Fe-24W homogeneous matrix [8] 
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Figure 6. Configuration of the interferometer: U – upper spherical interferometer mirror, B – 

bottom mirror, T – thermocouple, H – specimen holder, S – cylindrical specimen 
 

Specimen Preparation and Measurement Procedure 
The measurements were performed on a 90W-7Ni-3Fe alloy specimen. The numbers in the 

alloy name stand for the mass composition. The material exhibits typical structure: quasi-
spherical hard tungsten particles are embedded in a ductile 53Ni-23Fe-W matrix (Figure 5). The 
alloy was prepared using standard procedures by sintering its powdered components at about 
1650 oC. Cylindrical specimen was prepared from the finally fabricated ingot by machining to 
the shape of a hollow cylinder (see Figure 6). The outside diameter of the cylinder was about 
19.9 mm, the length was equal to 15.07 mm. The upper horizontal surface of the specimen was 
cut to ensure a tripod support of the upper interferometer mirror. The dilatometric experiments 
were carried out under vacuum conditions within the range from room temperature to about 
1120 oC on both heating and cooling over repeated temperature cycles. The heating/cooling rates 
were usually about 5 K/min. The investigations included four repeated measurements in total. 

Results of Experimental Investigations 
Dilatometric measurements established experimental thermal characteristics of CLTE* (α*) 

and dilatation (LE) of the investigated material. The resolution of the recorded data was better 
than 2 K. The raw experimental data are shown in Figure 4 (1st run) and in Figure 7 (the next 
three runs).  

Inspection of the obtained results revealed phase transition that appeared roughly about 
700 oC. The onset temperature of the transition differ between heating and cooling for about 
10÷20 oC. It was also observed magnification of the CLTE* heating and cooling peaks in every 
consecutive run. The revealed phase transition results in hysteresises observed on LE curves 
(Figs 4.b, 7.b, 7.d and 7.f). However, these effects were not accompanied by any permanent 
changes of the basic specimen length l0. 

4. Numerical Processing of the Experimental Data 
Basic tasks of approximation analysis were defined in view of processing of high resolution 

CLTE* data. They are as follows: 
1. Smoothing the dispersed CLTE* data. 
2. Reconstruction of the analyzed CLTE* thermal characteristic altogether with its 

discontinuities due to phase transition. 
3. Substitution of  discrete data with a representative function enabling data tabulation. 

All the above also concerns the dilatation ε. However, there is another task constituting a real 
challenge: 
4. Reconstruction of the CLTE* characteristic using only the LE data. 
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a b 

c d 

e f 
Figure 7. CLTE* and LE results from repeated runs: a, b – 2nd; c, d – 3rd; e, f – 4th  

 
The difficulties in performing the last are mostly due to integral character of dilatation with 
reference to linear expansivity (comp. eg. [3]). 

Basic calculations were performed separately on overlapped heating and overlapped cooling 
results from all four measurements. Both fixed and variable knot procedures were applied. The 
uniform weights wi=1 were taken for the data processing. In calculations 4th order splines were 
applied. The initial guesses for knots accounted for possible discontinuity of α*(T) curve at 
phase transition: corresponding knots at 708 oC for heating and at 695 oC for cooling were 
multiplied by four.  Locations of these crucial knots were established in preliminary calculations 
– at this stage variable knot procedure was applied once or twice and initial guesses were shifted 
according to the obtained results. The effects of data processing are shown in Figure 8.  

THERMOPHYSICS 2008 Kočovce, October 16-17, 2008

126



Repeated variable knots calculations applied for compacted CLTE* results made possible 
more reliable identification of the (averaged) phase transition temperature from sparsely 
distributed experimental data. Fixed knots algorithm resulted in more reliable representation of 
the averaged thermal characteristic. Tabulated data and information concerning B-spline 
representation of the appropriate approximate will not be presented here but it should be 
mentioned that they are accompanied by a piecewise polynomial representation consisting on 4 
and 6 polynomials for heating and cooling respectively (see Tab. 1).  
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Figure 8. Results of B-spline approximation of CLTE* experimental data from: a - heating 
and b – cooling runs with indication of the identified phase transition peak temperatures 
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Table 1. Knots distributions for spline characteristics obtained for CLTE* results (data in oC) 

Heating (Fig. 8.a) Cooling (Fig. 8.b) 
Fixed / initial guess Resultant variable Fixed / initial guess Resultant variable 

-10 -10 40 40 
-10 -10 40 40 
-10 -10 40 40 
-10 -10 40 40 
644 461.9863 250 250 
708 706.0758 408 617.3073 
708 707.6634 690 689.0349 
708 708 695 695 
708 708 695 695 
940 1003.97 695 695 
1140 1140 695 695 
1140 1140 905 900.92 
1140 1140 1140 1140 
1140 1140 1140 1140 

  1140 1140 
  1140 1140 

 
 
Table 2. Results of B-spline approximation of LE results from 3rd run 

Heating (Fig. 9.a – magenta curve) Cooling (Fig. 9.a – cyan curve) 
t 

/   oC 
LE 

/  mm⋅m 
t 

/   oC 
LE 

/  mm⋅m 
t 

/   oC 
LE 

/  mm⋅m 
t 

/   oC 
LE 

/  mm⋅m 
0 -0.1536 600 3.667983   600 3.787316
50 0.156133 650 4.020009   650 4.137864
100 0.409651 700 4.404421 100 0.481182 700 4.60696 
150 0.662437 750 5.021262 150 0.716601 750 4.978506
200 0.938911 800 5.489223 200 1.01746 800 5.356592
250 1.23956 850 5.865678 250 1.357883 850 5.767552
300 1.559742 900 6.223205 300 1.717342 900 6.21928 
350 1.895078 950 6.623683 350 2.080658 950 6.701695
400 2.241509 1000 7.113113 400 2.438006 1000 7.198724
450 2.595287 1050 7.688818 450 2.784882 1050 7.703204
500 2.952983 1100 8.278246 500 3.12165 1100 8.218685
550 3.311481 1120 8.48811 550 3.452892 1120 8.430792

 
For illustration of the algorithm performance in reconstruction of a certain thermal data from 

its integral characteristic results of linear expansion measurements form the 3rd experiment run 
were arbitrarily selected. The data were processed applying 5th order splines which correspond to 
4th order splines applied in CLTE* approximations. The input data as well as the results of 
calculations are shown in Figure 9. The illustrated results come from variable knot procedure. 
The data on LE are additionally presented in tabulated form in Table 2. 
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Figure 9. Results of 3rd run of dilatometric measurements (a) and effect of the LE 

experimental data approximation (b) together with results of CLTE* characteristics 
identification for heating (c) and cooling (d) from the approximated LE data 

 
Analyzing the results one can notice inconsistency for about 0.7 % at 1120 oC in LE data. 

This discrepancy reflects initial inconsistency in experimental data and can not be attributed to 
the approximation procedure. The input data was not corrected for the temperature gradients1. 
However, it should be underlined that like in every approximation problem performance of 
fitting procedures at both ends of the data range usually is the weakest. Results shown in Figs 9 c 
and d confirm this observation. As was expected (comp. e.g. [4], [6], [11]) the fixed knot 
procedures were proved to be more reliable in data representation at the basic interval ends but 
they need additional information at the input. 

5. Summary 
The high thermal resolution dilatometric data from 90W-7Ni-3Fe tungsten heavy alloy 

investigation were numerically processed applying B-spline approximation procedures. The 
numerical analysis helped in inspection of the raw experimental data and enabled to establish 
representative thermal characteristics of the investigated property. The results were differentiated 
between heating and cooling. For the first time (comp. [2], [6] and [11]) the procedure of the 
spline approximation was applied for combined data from different experiments. There are 

                                                 
1 The problem of the nonuniform temperature distribution within the interferometer system is discussed in [7]. 
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promising outcomes from the performed analysis. The used procedures were proved to be not 
only well conditioned and effective in reconstruction of differential characteristics, helpful in 
detection of thermal characteristic singularities but also useful in providing the results averaged 
between different experimental runs.  

The investigations, including numerical analyses results, provided data for further studies. 
The LE data will be applied in numerical modeling of heat transfer phenomena that occur during 
material sintering. The results of the phase transition investigation contribute to better 
understanding of the material under thermal cycling. 
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