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Abstract 
 
This paper concerning the problem of analytical and numerical modelling of ‘thickness 
effect curve’ under steady-state conditions for interactive optical media, where 
simultaneous radiation and conduction heat transfer occurs. Considerations are 
performed for a 1-D steady-state heat transfer model in an absorbing, emitting and 
anisotropically scattering grey medium confined by grey surfaces. To find  dependence 
of the radiative thermal conductivity kr(l) on the sample thickness l, a finite difference 
method (FDM) together with a discrete ordinate method (DOM) and the Henyey-
Greenstein phase function were used iteratively. 
 
Key words: radiative-conductive heat transfer, thermal conductivity, absorption, 
emission and scattering of radiation, thickness effect curve, phase function 
 
1 Introduction 
 
The results of modelling and numerical simulation of the effect of reduction in thermal 
conductivity k(l) for small thickness samples of semitransparent media in case when 
enclosing the medium surfaces are grey and diffuse are reported. The subject of an 
interest is  isotropic and homogeneous material with thermal conductivity dependence 
k(l) on the sample thickness l obtained as a result of measuring it under conditions  of a 
definite value (a few degrees) of the temperature difference TΔ  between the heater  
and the cooler  of the plate apparatus – Figs. 1÷2.  The visible in Fig. 2  two points 
marked as  A and B correspond to the two different sample thicknesses  l

2T

1T
A and lB.   B

  
Fig. 1 The sample of thickness l between the 
heater T2 and the cooler T1 of the plate apparatus  

Fig. 2 Effect of reduction in thermal conductivity 
k(l) in small thickness sample: k1 - conductive 
component of thermal conductivity,  ( ) ( ) 1klklkr −=
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2 Analytical model 
 
Let us assume that the material with different forms of the curve of thermal conductivity 
k(l) dependence on the sample thickness l  having also different values of the limiting 
sample thickness lgr, above which the reduction of k(l) may be neglected, is considered. 
The jump-like relation k(z), presented in Figs  3 and 4, shows the model dependence on 
the thermal conductivity k(z) (for a given sample thickness l) [1] from which  it follows 
that  where, in particular case,  at z=0 and T=Trkkk += 1 1 we have . 
Similarly, for the other side of the sample at z=l and T=T

( ) 10 kzk ==

2 we have also  
(Figs. 3 and 4). Each curve k(z) can be divided into three parts, the first and the third of 
which correspond to the region from z=0 to z=l

( ) 1klzk ==

gr where 1kk =  and from z=l-lgr to z=l 
where , too. The second corresponds to the region from z=l1kk = gr to z=l-lgr where       
k = k2. Now it is possible to determine k(l) dependence for a sample divided into three 
layers, where the thickness of the particular layer equals lgr, l-2lgr, lgr, respectively, by 
solving the linear 1-D steady-state heat conduction problem for each of the particular 
region  [1]: 
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where lgr is a function of absorption coefficient a and sample thickness l. Then the 
radiative heat flux density  can be calculated from the following expression [1]:  ( )lqr
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Fig. 3. The model of dependence of k(z) (for the 
sample thickness l) accepted for analytical 
considerations [1]     

Fig. 4. Plot of k(l) along different sample thickness 
l with marked two points corresponding to the two 
different sample thicknesses l1 and l2 [1]  
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When the sample thickness  l is getting closer to l=2lgr, the mean free path of photons 
becomes comparable to the space between plates and some of the photons leaving the 
hot surface manage to reach almost or actually the cold surface before they become 
absorbed. In our opinion such a situation permits us to replace lgr with expression 

( )lba
grgr ell ⋅⋅−−=′ 1 , where b is a constant parameter [1]. After doing some algebraic 

manipulations, one can obtain the following condition for the limiting thickness of the 
sample lgr as well as for a new form of expressions for k(l) and ( )lqr  [1]:  
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where:   is the Stefan-Boltzmann constant ( ), n  is the 
index of refraction,  denotes the conductive component of thermal conductivity [5-8].  

Bσ
428 KmW1067.5 −−−⋅=Bσ

1k
Some preliminary calculations of k(l) and ( )lqr  obtained both from the numerical 
solution of the Radiative Transfer Equation (RTE – exact formulation) coupled with 1-
D heat conduction in an emitting-absorbing medium and from analytical model are 
shown in Figs. 5 and 6 [1]. 
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Fig. 5. Thermal conductivity k(l) obtained from 
RTE vs. analytical model [1] 

Fig. 6. Radiative heat flux density  obtained 
from RTE vs. analytical model [1] 

( )lqr
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The biggest discrepancy between the precise numerical results and the given model 
occurs when the conduction to radiation parameter N equals 0.02 [1]. It is not surprising 
that in that case the biggest non-linearity of temperature distribution T(z) inside the 
sample occurs along its thickness. It has to be underlined that all calculations and 
analytical model have been made for emissivity of the walls ε1=ε2=ε=1. When the 
surfaces enclosing the medium are grey and are diffuse reflectors, the results of 
calculations which were made to include the influence of the surface emissivity on the 
k(l) are illustrated in Fig. 7. In case of very low emissivity of the wall one can observe 
that curves k(l) reveal characteristic inflexion in the range of small thickness of the 
samples l corresponding to the maximum of curves ( )lqr . The analytical model takes 
into account both inflexion of curves k(l) as well as maximum of ( )lqr . In the vicinity of 
the sample surface the energy transferred by conduction is a larger fraction of the total 
energy flux than in the region located farther from the walls. Thus temperature gradient 
in the neighborhood of the walls increase with the decreasing emissivity, and therefore 
the conductive flux in these regions becomes a larger fraction of the total energy flux. In 
our opinion such situation permits us to replace l by grlll ′+=′ 2  and  by the 

expression 
grl′

( )la
grgr ell ′⋅−−′′=′ 1  [2]. Just like before performing some algebraic 

rearrangements one can obtain  the following condition for the limiting thickness of the 
sample   grl ′′
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and a new form of expressions for k(l) and ( )lqr   [2]: 
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Fig. 7. Plot of thermal conductivity k(l) and 
radiative heat flux density ( )lqr  along different 
sample thickness l according to RTE calculations 
with surface emissivity less than one [2] 
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In order to verify the proposed method some preliminary calculations of k(l) and ( )lqr  
were carried out [2]. Dependencies of k(l) and ( )lqr  on the sample thickness l obtained 
from RTE and from analytical model are shown in Figs. 8 and 9. With the increase of 
the parameter N the discrepancies between the analytical functions of k(l),  and the 
exact results decrease and for N=2 the errors are acceptable [2]. 

( )lqr
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Fig. 8. Dependence of k(l) obtained from RTE and 
analytical model: ε1=ε2=ε = 0.5 or 0.04 [2] 

Fig. 9. Dependence of ( )lqr  obtained from RTE 
and analytical model: ε1=ε2=ε = 0.5 or 0.04  [2]  

 
3 Numerical model 
 
A model of 1-D steady-state combined conductive-radiative heat transfer in the 
absorbing, emitting and anisotropically scattering medium confined between grey 
surfaces has been considered. To find the radiative thermal conductivity dependence 
kr(l) (for a sample thickness l) and dependence of the radiative heat flux density ( )lqr  
upon the sample thickness l, a finite difference method together with the discrete 
ordinate method and the Henyey-Greenstein phase function expanded into Legendre 
polynomials have been used iteratively [3, 4]. The Henyey-Greenstein phase function 

, where Θ  denotes the scattering angle (angle between incident and scattered 
direction of radiation), allows us to understand the influence of the asymmetry 
parameter g on the shape of the scattering phase function [4]. When the asymmetry 
parameter g increases, the anisotropic scattering radiation increases too and, at the same 
time, the range of influence of scattering extends. Parameter of asymmetry g defines 
forward scattering for g=1, backward scattering for g=-1 and isotropic scattering for 
g=0. Other values of the asymmetry parameter g which belong to the interval g∈[-1; 1] 
are also possible [3, 4]. In our considerations it is assumed that the conductive 
component of thermal conductivity k

( ΘcosP )

1 = kc is constant. The radiative properties of the 
medium such as the absorption coefficient a, extinction coefficient  and index of 
refraction n are also constant. The governing equation for a non-grey medium which 
represents energy conservation in 1-D formulation of the coupled conduction-radiation 
problem is given by [3, 4, 5-8]: 

κ
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( ) ( ) ( )μσ+μ=μκ Sa , θ=μ cos ,   (20) 
 
where:  is the spectral radiation intensity, WmλI -2;  stands for the 
blackbody intensity, Wm

πσ= /42 TnI Bb
-2;  is the polar angle and θ sσ  is the scattering coefficient, m-1 

[5-8]. 
 
In order to elucidate the physics of the analyzed complex phenomenon of simultaneous 
conduction and radiation in an emitting, absorbing and anisotropically scattering 
medium confined between grey surfaces some preliminary calculations of kr(l) and 

 were carried out [3, 4]. The initial data for performing numerical calculations are 
enclosed in Tab. 1. Data used in calculations were chosen in such a way that the impact 
of albedo ω  and the parameter of asymmetry g on k

( )lqr

r(l) and ( )lqr  thickness dependences 
are visible. Finally the calculations were performed using 6 fluxes in the conductive-
radiative heat transfer model. Six fluxes turned out, in this case, to be quite enough to 
obtain an engineering accuracy of calculations [4]. The dimensionless conduction to 
radiation parameter N=8 was taken big enough so as to avoid instability of numerical 
calculations. The results of calculation are shown in Figs. 10÷13 [3, 4].  
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Table 1.  Data for performing numerical calculations of kr(l) and ( )lqr  [3, 4]  

11000 −=κ m , , 11
1 1.0 −−== KWmkk c [ ]1;0∈ω , n=1, T1=280 K, T2=380 K, N=8 

121 =ε=ε=ε  04.021 =ε=ε=ε  
 , g=-0.8 or g=+0.8 }0.1,9.0,5.0,3.0,0.0{=∈ω

( ) ( ) ( ) 2/322 cos21/1cos Θ−+−=Θ gggP  
ε  - emissivity of the walls, 

κσ=ω /S  - single scattering albedo, 

Sa σ+=κ  - extinction coefficient, m-1, 

Sσ  - scattering coefficient, m-1   
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Fig. 10. Dependence of kr(l) for anisotropic 
scattering: g=±0.8, ω ∈{ 0.3, 0.9}, ε1=ε2=ε = 1.0  
[4]  

Fig. 11. Dependence of ( )lqr for anisotropic 
scattering: g=±0.8, ω ∈{ 0.3, 0.9}, ε1=ε2=ε = 1.0 
[4]  
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Fig. 12. Dependence of kr(l) for anisotropic 
scattering: g=±0.8, ω ∈{ 0.0, 0.3, 0.5, 0.9, 1.0}, 
ε1=ε2=ε = 0.04   [4]  

Fig. 13. Dependence of ( )lqr for anisotropic 
scattering: g=±0.8, ω ∈{ 0.0, 0.3, 0.5, 0.9, 1.0}, 
ε1=ε2=ε = 0.04   [4]  

 
The most interesting situation occurs when anisotropic scattering is considered [3, 4]. 
The higher value of albedo  the more important role plays the parameter of 
asymmetry g. And so for  the influence of the coefficient g on the k

ω
3.0=ω r(l) and ( )lqr  

dependencies is relatively small – Figs. 10÷13. The curves kr(l) are places below line  
- Figs. 10 and 12. For  that is for strong scattering the curves k

∞l
8.0+=g r(l) are close to 

the values 
κ
σ

==
3

16 3*2

max
Tnkk B

Ross  (where: T*=T2) marked as  - Figs. 10 and 12   

[3, 4]. For  curves k

∞l

8.0−=g r(l) are significantly below the line  [3, 4]. The situation 
changes totally when the albedo is equal to 

∞l
9.0=ω . For 8.0+=g  the curves kr(l) lie 

significantly above the line  [3, 4]. This case plays a fundamental role in real 
experiment. It turns out that the values of radiative component of thermal conductivity 
k

∞l

r(l) may be measurable and the role of heat transfer by radiation, even in relatively low 
temperatures, might be significant.  
 
4 Conclusions 
 
The results of modelling and numerical simulation of the effect of reduction in thermal 
conductivity k(l) in small thickness samples of semitransparent media have inspired the 
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authors to develop a possible precise enough analytical and numerical model for the 
abovementioned effect. It is worth noticing that the analytical model works qualitatively 
well [1÷4]. In case of numerical evaluation the stress was put on the method of solving 
the coupled radiative-conductive heat transfer problem using FDM to find temperature 
fields along the layer thickness of considered material together with DOM to find the 
radiation intensity which were used to calculate the source term appearing in the 
governing equation of energy conservation. The analysis of the obtained numerical 
results enabled to draw practical conclusions concerning the experimental 
measurements with respect to the effect of reduction in thermal conductivity k(l). 
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