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Abstract 
 
We present the solution of 1D - heat conduction equation using Laplace transformation for a 
solid body restricted by two parallel planar surfaces which temperatures are constants. 
Comparison of that solution with measured values of temperature somewhere inside the solid 
body permits to determine thermal parameters (like diffusivity a, thermal conductivityλ, 
specific heat c) of the solid. The formula 2

c ca l tθ= determining diffusivity is derived. 
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1. Introduction 
 
Fig. 1 shows a sample the coordinate system and initial and final distribution of the 
temperature. 
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It is assumed that the temperature at the border surfaces is constant and initial temperature 
inside a body is zero. After switching on the temperature in time interval  at the border 
plane 

0t >
x l= −  is constant and equals to  as well as at the second border plane 1T x l=  where the 

constant temperature is equal to . In words of mathematics:  2T
 
( ) 1,T x l t T= − =        t > 0                                 (1.1) 

                                                                      
( ) 2,T x l t T= =                     t > 0                                                                                        (1.2) 

 
( ), 0T x t = = 0

)

            ,    t = 0                                                                             (1.3) 
 

l x l− < <

We are searching for solution of 1D - heat conduction equation ( ,T x t
 

2

2 0T Ta
t x

∂ ∂
− =

∂ ∂
,                                                                                                                    (1.4) 

 
assuming it obeys boundary (1.1), (1.2) and initial (1.3) conditions. Here a cλ ρ= , and ρ  is 
the density of a body.  
 
2. Method of solution 
 
After sufficiently long period of time one can expect that the temperature field inside a body 
becomes stationary (if ). Then 1T T≠ 2

 

0
 t
τ∂
=

∂
.     In this state        

2

2 0d
dx
τ
=                                                                             (2.1) 

 
Solution of this equation obeying boundary conditions is                                                       
 

( ) ( ) ( )1 2

2
T l x T l x

x
l

τ
− + +

=                                                                                            (2.2) 

     
Solution of non-stationary heat conduction equation we write down as a sum of two functions  
 
( ) ( ) (, ,T x t x t xΘ τ= + )

)

                                                                                                       (2.3) 
 
Then the boundary conditions for the function.  
 
( ) ( ) (, ,x t T x t xΘ = −τ

0

0

  are:                                                                                             (2.4) 

                                                            (2.5) 

                                                                  (2.6) 
 

( ) ( ) ( ) 1 1, ,x l t T x l t x l T TΘ τ= − = = − − = − = − =

( ) ( ) ( ) 2 2, ,x l t T x l t x l T TΘ τ= = = − = = − =

and the function Θ fulfils the initial condition 
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( ) ( ) ( ) ( ), 0 , 0x t T x t xΘ τ= = = − = − xτ                                                                              (2.7) 

 
It is easily to show that the Θ function is also a solution of the heat conduction equation  
 

2

2 0a
t x
Θ Θ∂ ∂

−
∂ ∂

=                                                                                                                    (2.8) 

 
(see Appendix). 
We have obtained the solution given by the formula (A.16a) in Appendix. Using that solution 

and introducing new dimensionless variables: time 2

at
l

θ = - (this variable gives the time value 

t in the new time unit characteristic for a given sample - namely 2l a⎡ ⎤⎣ ⎦ ) - and the space 

coordinate   x
l

ξ = ,   1 1ξ− < < .  Then considering (A.16a) relative temperature can be 

expressed as follows 
 
 
( )
( ) ( ) ( ) ( ) ( )

1 2
0

, 2 1 21 -1 erfc erfc
2 2

n

n

T t n n
T T

ξ ξ
τ ξ τ ξ θ θ

∞

=

⎡ ⎤+ + + −⎛ ⎞ ⎛
= +⎢ ⎥⎜ ⎟ ⎜

⎢ ⎥⎝ ⎠ ⎝⎣ ⎦
∑

1 ξ ⎞
+⎟

⎠
 

 

                 
( )

( )
( ) ( )1 2

0

4 3 4 3
erfc erfc

2 2n

T T n nς ξ
τ ξ θ θ

∞

=

⎡ ⎤− + + +⎛ ⎞ ⎛
−⎢ ⎥⎜ ⎟ ⎜

⎢ ⎥⎝ ⎠ ⎝⎣ ⎦
∑

− ⎞
⎟
⎠

                                    (2.9) 

where 
 

( ) ( ) (( 1 2
1 1 1
2

T T ))τ ξ ξ= − + + ξ

2

    is the local (at point ξ  ) steady temperature              (2.10)                      

 
One can draw 3D graph of this relative temperature function in good approximation 
accounting few first terms from infinite series.  
The relation (2.9) shows that one of the simplest cases occurs when temperature at both 
border planes is the same   and one measures the time development of temperature in 
the middle of the specimen at . In this case dimensionless temperature is 

1T T=
0x =

 
 
( ) ( ) ( )

01

0, 2 1
2 -1 erfc

2
n

n

T n
T

ξ θ

θ

∞

=

= +⎛ ⎞
= ⎜

⎝ ⎠
∑ ⎟                                                                          (2.11) 

 
 
In our approach influence of thermal contact at the border plane is neglected and strictly 
speaking a heat flow exists along x - axis only. Approximately, this flow prevails so that the 
heat losses trough cylinder jacket (of a cylindrical sample) during time of measurement 
temperature is negligible.  
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3. Universal theoretical temperature dependence on dimensionless time 
 
Now, we want to use the local time development of temperature mentioned above to measure 
diffusivity a of a solid body and measurement to execute in relative short period of time.1

If one restricts himself by the first six terms of the series in (3.2) 2   
 
( ) ( ) ( )

01

0, 2 1
2 -1 erfc

2
n

n

T n
T

ξ θ

θ

∞

=

= +⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ �  

( ) 0.5 1.52erfc 2erfcf θ
θ θ

⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

2.5 3.5 4.5 5.52erfc 2erfc 2erfc 2erfc
θ θ θ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠θ
  

 
                                                                                                                                            (3.1) 
                                                           
and draws a graph of ( )f θ function (in program Mathematica 4) then can see that it rises 
relatively steep in an interval 0 < θ  < 2.5 and approaches close to the equilibrium value of the 
temperature . This curve does not depend either on dimension of the sample or on 
diffusivity a. 

1T
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                                           Fig. 2   
 
 
The dimensionless time variable was introduced as 2at lθ = . It was already said that 
quantity  2l a  can be taken for a proper “unit of the tine” of the particular sample. If we 
would dispose a sample for which this quantity would be 2 1l a = then θ  would be equal to t,  

tθ = . 
 That quantity 2l a  is characteristic for transition of the particular sample into the equilibrium 
state with temperature . The order of  1T 2l a  is approximately equal to “the time of 
transition” 2

rt l∼ a
                                                

.  
 

1 One can examine behavior of derivative log T with respect to diffusivity a (like in [3]) which characterizes 
sensibility of temperature to a change of diffusivity. 
2 Behavior of a member of this infinite series is discussed in [1] and [2].   
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The temperature T is less then or equal to  . If we choose the value of 1T ( )T θ  then the ratio 

( ) ( )
1

T
f

T
θ

θ�                                                                                                               (3.2) 

is known.  
The eq. (3.2) determines coordinate cθ  of the intersection point which coordinates are 
 

1

,  c
T
T

θ
⎡ ⎤
⎢
⎣ ⎦

⎥                 (see Fig.2)                                                                                      (3.3) 

 
For example coordinates of the intersection point of that line 1 0.95T T =  with the curve  (3.1) 
are  [ ] [ ]1,  1.314,  0.95c T Tθ = . It holds 
 

2c
a t
l c l 2 tλθ

ρ
= =                                                                                                             (3.4) 

 
In the relation (3.4) the values of cθ  and l are known but the diffusivity a  and corresponding 
time t are unknown. So we need to have one more formula connecting these four quantities.  
It follows; we shall be searching for this formula. 

 
 
4. Determination of diffusivity using experimental local time development of temperature  
 
Let us assume that temperature dependence on time t at 0x =  is known from experiment 
 
( ) ( )exp

1

0,T x t
f t

T
=

=                                                                                                      (4.1) 

 
Parameters a and l do not appear in the function ( )expf t  explicitly. If this experimental curve 

will coincide nearly with theoretical (3.1) (after substitution 2at lθ = in it), in an interval of 
time <0, tm> then one can find from experiment the value  and using the formula (3.4) 
calculate the diffusivity a (or thermal conductivity

ct
λ  assuming 2clρ is known). Then - with 

respect to (3.4) – it holds 
 

2  r

r

a l
t
θ

=                                                                                                                       (4.2)    

 
From Vretenar`s measurement [3] on SiC sample which length was 2l = 2.84 mm, we take 
values of  and thermal conductivity  (where 
the values  and  were accounted). We do not dispose of this 
experimental curve

6 2 121.2 10 ma −= × s− -1 -146.187 Wm Kacλ ρ= =
-33242 kg.mρ = -1 -1672 J.m .Kc =

( )expf t . Nevertheless; we try to show that above presented method of 
determination diffusivity really works in this case. 
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Using some of these data we are going to test our approach to determine a. We put 
again ( )1 exp 0.95T T f t= = . Then that eq. determines the time coordinate .  ct
 
 

0.05 0.1 0.15 0.2

0.2

0.4

0.6

0.8

1

  t 
 
                                   Fig.3 
                                 
 
Fig. 4 depicts dependence of ( ) 10,T x t T=  given by (3.1) on the time (in seconds). This 

curve we have obtained by inserting  2

21.2
1.42

at t
l

θ = = 2  in (3.1). That curve supplies 

experimental one ( )expf t . We are looking for such value of the time t for which value of 
“experimental function” is equal to 0.95 and that value equals to 0.125 sct = . (It is very  short 
time to gain experimental data needed for determination of temperature development in 
time.). Then we have obtained the value of diffusivity  
 

( )22 6 2 11.3141.42 10  m s 21.196 10 m s
0.125

r

r

a l
t
θ − − −= = × = × 6 2 1−  

 
This is in excellent agreement with Vretenar`s result 
It seems to us that more suitable should be a longer sample. For ten times longer sample  
2.84 cm the time  should be hundred times bigger. In such a case it would be 12.5 s. ct
Now, we shall discuss shortly the case when 2 0T =  and 0ξ =  then 
 
( )
( )

( ) ( ) ( )
01

0, 0, 2 1
2 -1 erfc

0 2 2
n

n

T T n
T

ξ θ ξ θ
τ ξ θ

∞

=

= = ⎛ ⎞
= = ⎜= ⎝ ⎠

∑
+

⎟                                                   (5.3)                          

 
This formula shows that temperature approaches its stationary (maximal) value 1 2T  in the 
plane at  in the same time interval as before (in the case when was equal to ). But at 
that time the maximal value at  was  - twice as big as now.) 

0x = 1T 2T
0x = 1T

The more detailed analysis of the temperature field given by (2.9) offers further possibilities 
for determining thermal parameters (see [3]). 
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 5. Conclusions 
 
It is assumed that the time development of the temperature at the center plane at x = 0 of a 
specimen is measured and consequently known. Then it is possible to draw a graph of 
temperature dependency on the time ( ) ( )1 exp0,T x t T f t= =  in a short time interval 0, mt  

(tm represents a few ten seconds). represents the time lying in an interval ct 0, mt . 
 On the other hand the theoretical time dependence of the temperature is given by (3.1) (in the 
same time interval). Then it is possible to find the value of cθ  at which  

( ) ( )1 ecT T f f tθ= = xp c  holds. The diffusivity value of the sample is expressed by the 
relation (4.2). We expect that by insertion this value of a as well as l in theoretical 
temperature dependence (3.1) on time t it will coincide with experimental dependence ( )expf t . 
 
 
APPENDIX 
 

Indeed        
( ) ( )2

2 0  a
t x

Θ τ Θ τ∂ + ∂ +
−

∂ ∂
=    ,   and       

2

2 0
t x
τ τ∂ ∂
= =

∂ ∂
   

 
Laplace transformation of the Θ function ( ) ( ), ,x s L x tϑ Θ= ⎡ ⎤⎣ ⎦  fulfils the eq. 
 

{ } ( )( )
2 2

2 2 0  
L

L a s x a
t x x

ΘΘ ϑϑ τ
∂∂ ∂⎧ ⎫ − = − − −⎨ ⎬∂ ∂ ∂⎩ ⎭

=  

 
This is ordinary nonhomogeneous differential eq. of second order 
 

( )2

2

xd s
a adx

τϑ ϑ− =                                                                                                                 (A.1) 

 
Further we shall denote   s a k= . Then, the general solution of this eq. is equal to the sum 
of the general solution  
 

( ) ( )0 0 0exp expA kx B kxϑ = + −                                                                                    (A.2) 
 
of the corresponding homogeneous eq. 2 0kϑ ϑ′′ − =  and of some particular solution ϑ�  of the 
nonhomogeneous eq.  2k aϑ ϑ τ′′ − =� � . 
To find particular solution ϑ�  the method of variation of parameters A, B was used  
 

( ) ( ) ( ) ( )exp expA x kx B x kϑ = +� x−                                                                                (A.3) 
 
This leads to expressions 
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( ) ( ) 2 1
3

1 exp
22

T T
A x kx k

lak
τ

−⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

 

( ) ( ) 2 1
3

1 exp
22

T T
B x kx k

lak
τ

⎛ −⎛ ⎞= − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎞  

Then 
( )

2

x
ak
τ

ϑ = −�                                                                                                                      (A.4) 

 
We have obtained the general solution of the nonhomogeneous eq. in form 
 

( ) ( ) ( ) ( ) ( )1 2
0 0 2, exp exp

2
T l x T l x

x s A kx B kx
alk

ϑ
− + +

= + − − ,    k s= a                           (A.5) 

 
This solution should satisfy transformed boundary conditions 
 
( ),x l sϑ = − = 0                                                                                                                 (A.6) 

( ),x l sϑ = = 0                                                                                                                    (A.7) 
 
Thus, we obtain two eqs. for determination  0 0,A B

( ) ( ) 1
0 0 2exp exp 0

T
A kl B kl

ak
− + − =                                                                                 (A.8) 

( ) ( ) 2
0 0 2exp exp 0

T
A kl B kl

ak
+ − − =                                                                                (A.9) 

 
witch solution is  
 

( ) ( )
( )

2
0 2

exp 3 exp 2

1 exp 4

kl T kl T
A

ak kl

− −⎡ ⎤⎣=
− −⎡ ⎤⎣ ⎦

1 ⎦ ,                                                                                 (A.10) 

 
( ) ( )

( )
1

0 2

exp 3 exp 2

1 exp 4

kl T kl T
B

ak kl

− −⎡ ⎤⎣=
− −⎡ ⎤⎣ ⎦

2 ⎦                                                                                   (A.11) 

 
Thus, the transformed solution satisfying transformed boundary conditions is  
 
( ) ( ) ( ) ( ) ( ) 2

0 0 1 2, exp exp 2x s A kx B kx T l x T l x alkϑ = + − − − + +⎡ ⎤⎣ ⎦ =  
 

( ) ( )( ) ( ) ( )( )
( )

2 1 1 2
2

exp 2 exp exp 2 exp

1 exp 4

T T kl k l x T T kl k l x

ak kl

− − − − + − − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
− −⎡ ⎤⎣ ⎦

 

( ) ( ) 2
1 2 2T l x T l x alk− − + +⎡⎣ ⎤⎦                                                                                         (A.12) 
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Using the expansion 
 

( )
(

0

1 exp 4
1 exp 4

nkl
kl

∞

= −
− −⎡ ⎤⎣ ⎦

∑ )    valid for  ( )1 exp 4kl> −                                          (A.13) 

                                             
We can rewrite ( ),x sϑ  as 
 

( ) ( )( ) ( )( )2 1
0

1, exp 4 exp 4 3x s T nl l x s a T nl l x s a
s

ϑ
∞
⎡ ⎤= − + − − − + −⎣ ⎦∑ +  

                ( )( ) ( )( )1 2
0

1 exp 4 exp 4 3T nl l x s a T nl l x s
s

∞
⎡ ⎤− + + − − + +⎣ ⎦∑ a −  

                  ( ) ( )1 2
1 ,           

2
T l x T l x

ls
− + +⎡⎣ ⎤⎦                                                                  (A.14) 

 
One can obtain the inverse Laplace transformation using following formulae [ ] ( )1 ,L xϑ Θ− = t  
 

( )1
exp

erfc ,   
2

u s a uL
s at

−
⎡ ⎤− ⎛ ⎞⎢ ⎥ = ⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

holding for   0u
a

κ = ≥                                        (A.15) 

 (see [1]) and  
 

1 1 1L
s

− ⎡ ⎤ =⎢ ⎥⎣ ⎦
,    ( ) ( ) ( ) ( ) (1

1 2 1 2
1 1

2 2
L T l x T l x T l x T l x x

ls l
τ− ⎡ ⎤− + + = − + + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

)  

 
it follows 
 

( ) ( ) ( )
1 2

0

4 1 4 1
, erfc erfc

2 2
n l x n l x

T x t T T
at at

∞ ⎡ ⎤+ + + −⎛ ⎞ ⎛
= +⎢ ⎥⎜ ⎟ ⎜

⎢ ⎥⎝ ⎠ ⎝⎣ ⎦
∑

⎞
⎟
⎠

 

 

              
( ) ( )

1 2
0

4 3 4 3
erfc erfc

2 2
n l x n l x

T T
at at

∞ ⎡ ⎤+ − + +⎛ ⎞ ⎛
− +⎢ ⎥⎜ ⎟ ⎜

⎢ ⎥⎝ ⎠ ⎝⎣ ⎦
∑

⎞
⎟
⎠

                                   (A.16) 

 
One can see that by the function ( ),T x t  the boundary conditions as well as the initial 
condition are both fulfilled. 
The last expression can be rewritten into the form 
 
 

( ) ( ) ( ) ( )
1 2

0

2 1 2 1
, -1 erfc erfc

2 2
n

n

n l x n l x
T x t T T

at at

∞

=

⎡ ⎤+ + + −⎛ ⎞ ⎛
= +⎢ ⎥⎜ ⎟ ⎜

⎢ ⎥⎝ ⎠ ⎝⎣ ⎦
∑

⎞
+⎟

⎠
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                 ( ) ( ) ( )
1 2

0

4 3 4 3
erfc erfc

2 2n

n l x n l x
T T

at at

∞

=

⎡ ⎤+ + + −⎛ ⎞ ⎛
− −⎢ ⎥⎜ ⎟ ⎜

⎢ ⎥⎝ ⎠ ⎝⎣ ⎦
∑

⎞
⎟
⎠

≠

                              (A.16a) 

 
Notice 
 
In [2] p.101, formula (3.9) is introduced (without derivations) which gives the temperature 
distribution in a slab  with constant initial temperature V  and temperature at 
border planes maintain zero (Fig. 4) 

l x l− < < 0 0

 
 

( ) ( ) ( )
0 0

0

2 1 2 1
1 erfc erfc

2 2
n

n

n l x n l x
v V V

at at

∞

=

⎡ ⎤+ − + +⎛ ⎞ ⎛
= − − +

⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑                [2] p.101, f  (3.9) 

 

 
                                                              Fig. 4 

l−    0    l  x 

 
V0 

 
 
We show that this is one special case of our formula derived above when  T T . 1 2=

T→ − <If we change V  we obtain initial temperature well instead of initial 
temperature barrier and then we shift the zero temperature down at 

0 1 for 0

1T−  we finally obtain 
 

( ) ( ) ( ) ( )
1 1

0

2 1 2 1
, 1 erfc erfc

2 2
n

n

n l x n l x
T x t v T T

at at

∞

=

⎡ ⎤+ − + +⎛ ⎞ ⎛
= + = − +⎢ ⎥⎜ ⎟ ⎜

⎢ ⎥⎝ ⎠ ⎝⎣ ⎦
∑

⎞
⎟
⎠

                      (A.17) 
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