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Abstract: 
This paper thinks over the heat transport problem in plexi-glass environment. 
We applied the finite element method (FEM) for simple one dimensional 
example and offer exact description of FEM. Further it shows comparison of 
experimental data from measurement and data from numerical simulation using 
software ANSYS, in which the accordance with measurement is demonstrate. 
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THEORY 
 

Temperature and its spatial distribution represent the driving potential for heat transport. We 
consider convection and conduction as a process of heat transport. The heat flux density equivalent 
to conduction we express in equation 
 

 
x
Tq
∂
∂

−= .λ ,      (1) 
 

where λ is thermal conductivity , T temperature and q heat flux density. 
The heat flux density due to convection can be written as follows: 
 

 ( )ps TTq −= α  ,   (2) 
 

where α is heat transfer coefficient, Tp  represents environment temperature and Ts surface 
temperature of the sample, which is in contact with surrounding environment.  
The heat transport equation without source term is 
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where T is time and space dependent temperature field, cp is specific heat capacity and ρ material 
density. 
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SOLVED PROBLEM 
 

The aim of our work was the comparison of measured data and simulation, in which we take 
into consideration all conditions from the experiment (Fig.1). The sample, on which we realized the 
measurement has shape of cylinder, made of plexi-glass, with diameter 0.03m and length 0.30m 

(material parameters:
mK
W195.0=λ , 31180

m
kg

=ρ , 
kgK

Jc p 1465= ). 

Bottom of the cylinder presents a heat source, in direct contact with plexi-glass. Heat source was 
supplied by direct currant I=0.103A and voltage U=5.24V. Heat flux density from the source has 

constant value 2382
m
Wq =  during all measurement (1. boundary condition). Opposite side of 

cylinder bottom was in contact with ambient air. Its temperature has enduring value Tp=26oC 

(2.boundary condition) and 
Km

W
210=α . The shell of the cylinder was isolated by polystyrene of 

5cm thickness, hence the flux through its surface was nought (3.boundary condition). Internal 
temperature of cylinder was uniform To=26oC at the beginning of experiment (initial condition). 
From previous result, that we can consider only one dimensional problem. 

 

q TpPlexi-glass

Polystyrene

Polystyrene
 

Fig.1 

 

 

PROBLEM SOLUTION USING FINITE ELEMENT METHOD 
 

We are finding solution u (note Tu ≡ ), which must satisfy mentioned initial and boundary 
conditions and also heat transport equation, where ρpcc =  and λ=a . 
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Discretization of domain 

 
 All domain, on which are we solving the problem, we divide to n elements and n+1 nodes 
(Fig.2). First node represents surface of plexi-glass next to heat source, which ensure constant heat 

121



flux density inward the sample. Last node is surface on opposite side, which is in contact with 
surrounding environment. Length of chosen element is he. 
 
 
 1      2          3              xA      e  xB           n 
 
 
  1                2               3              4                       e       he        e+1                           n             n+1 
 

Fig.2 
 
 

DERIVATION OF ELEMENT EQUATIONS 
 

Derivation of weak form 
 

At first, we multiply the heat transport equation by weight function w. After that we integrate 
all expression over an element e. 
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Using Per-partes method we obtain 
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Fluxes into an element e in positions xA a xB are defined as:  A
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Weak form (WF) of transient problem: 
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Derivation of approximate function 

 
 We are finding an approximate solution of transient problem over element e in the shape: 
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where time development of the function u is included in time dependent value in j-th nodal point 
( )tu e

j  and ( )xe
jϕ  is spatial dependent j-th base function (n is number of nodes in element e). 

Bases functions must satisfy following conditions. They have to be continuous, differentiable (up to 
the order, which requires the weak form) and values of approximate solution in node points are 
equal to real solution. 

122



For example, the bases functions for linear approximation of solution u ( baxu e += ) over element have shapes: 
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Derivation of element equations 

 
Spatial semidiscretization 
 

Instead of u in WF we substitute approximate solution eu  and as a weight functions w we use 
bases functions φi.  
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Now we have the system of differential equations over element e 
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where  ( ) ( )dxxxcM e
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For linear approximation of solution the matrices have such shape  
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Further we introduce vectors: ( ) ( ) ( )( )tututuu e
n

ee ....,,, 21=  

     ( ) ( ) ( )( )tututuu e
n

ee ....,,, 21=  
 

Then we get simplified matrix notation: 
 

 FuKuM =+ ..       (12) 
 
Time discretization 
 

Let us consider the time evolution of ( )tu e
j  at j-th node of element e at time st  with timestep 

tΔ according to Fig. 3. 

 
Fig.3 
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The value of ( )s
e
j tu  raises during the timestep tΔ  to ( )1+s

e
j tu . This new value can be expressed as 

the sum of function value at time st  and its increment during timestep tΔ . The difficulty is in 
accuracy of calculating the increment. One possibility is to take the rate of temperature increase 
from the derivation at time st  (we take the Taylor’s expansion at time st  and use the first two terms 
of it to calculate the value at time 1+st ). As we can see from the curve describing the development of 
temperature depending on time this does not fit the real dependency and the following calculations 
would be signate by this inaccuracy. This is because the derivative has to be consistent with the 
slope of line (dash line) which connecting values ( )s

e
j tu  and ( )1+s

e
j tu . Therefore we look for another 

way to determine the derivative value. It is clear that there is always a point during the time step tΔ  
where the derivative of function ( )tu e

j  is consistent with the tangent of the dash line. We denote it 

α+st  (α can reach the value within 0 to 1). It is difficult to estimate the correct value of α. However 
the value of the derivative of function ( )tu e

j  at arbitrary chosen time during the timestep lies 
between of the derivative values at times st  and 1+st , therefore we achieve more accuracy. We 
replace the derivative at time st  by the derivative at time α+st  in the Taylor’s expansion which 
results in reducing the error caused by neglecting the higher terms of the expansion. We calculate 

( )α+s
e
j tu  from weighted average of the derivatives at times st  and 1+st .  

Then we can write: 
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When we consider   ( )ss tuu =  
     ( )11 ++ = ss tuu  
then 
 

 ( )( )11 .1. ++ +−Δ+= ssss uutuu αα .    (14) 
 

We multiply WF in time st  ( sss FuKuM =+ .. ) by the term ( )α−Δ 1.t  and WF formulation in 

time 1+st  ( 111 .. +++ =+ sss FuKuM ) by the term αtΔ . Afterward we sum both equations. Then we 
obtain an equation without time derivations. 
 

 ( )( ) ( ) ( )( )111 .1...1..1 +++ +−Δ=Δ+−Δ+Δ+−Δ ssssss FFtuKtuKtututM αααααα  (15) 
 

 ( ) ( ) ( )( )111 .1...1 +++ +−Δ=Δ+−Δ+− ssssss FFtuKtuKtuuM αααα   (16) 
 

We put unknowns 1+su  on the left side and knowns su  on the other side of equation. 
 

 ( ) ( ) ( )( )11 .1.1... ++ +−Δ+−Δ+=Δ+ sssss FFtuKtuMuKtM αααα   (17) 
 

Finally we have got system of algebraic equations over the element. 
 

 ss GuH =+1.       (18) 
 

For value α we can choose some possibilities: 
0=α   explicit Euler method    it can be unstable if we choose 

wrong time step 
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1=α   implicit Euler method    stable method 

2
1

=α   Frank-Nicolson method    stable method 

 
Derivation of global finite element model 

 
Further we give some indications how to proceed to derive global system of equations over 

whole domain. 
We consider two adjacent elements e and e+1. Their assembling is possible if we follow two 
conditions: 1, continuity of primary variables in connecting node points, it means 1

1
+= ee

n uu  (For the 

mesh of linear elements we can write: 1
1
1 uu = ,    2

2
1

1
2 uuu == , ....  n

nn uuu ===
1

1
2 ), and 2, balance of secondary 

variables in connecting nodes, it means 1+−= e
A

e
B QQ   

If we satisfy these simple rules, the systems of equations over each element will be arranged to one 
system of global equations, in which the numbering of nodes will be also global. 

 
 

INCLUSION AND DISCUSSION 
 

The flux from the heat source in experiment seems to be constant, as we can consider from 
constant temperature differences between source and adjacent plexi-glass surface, during 
experiment. We were also watching the surface temperatures on cylinder shell, that were in far 
regions from the source, about few tenths degree lower than on axis. In close region the differences 
were in order of few degrees. It shoves on fact, that dissipation fluxes over cylinder shell are not 
negligible, so we have to take this information into account in future simulation and instead of 
Neumann condition we must simulate exact structure of the equipment. Otherwise, the simulation  
verifies the measured data, as we can see from comparison of the simulation plots (Plot1,…, Plot4) 
and table of experimental data (Tab.1). We did not plot the dependence of measured data, because 
of wanting distances between the probes. Thus, for better monitoring of temperature field closer to 
heat source we have to insert much more probes into this area.  

 
 

SIMULATION RESULTS AND THEIR COMPARISON WITH 
EXPERIMENT 

 

Tab.1: Temperatures were measured on the cylinder axis in various distances from the source: 
0, 0.1, 0.2 a 0.3m, during time period 0-200min. 
 

  
Heat 

source 0 0,1 0,2 0,3 
0 26,075 25,940 26,100 26,200 26,425 
5 35,000 32,680 26,125 26,225 26,400 

10 38,600 36,350 26,125 26,225 26,400 
20 43,100 40,850 26,150 26,225 26,425 
30 46,275 43,875 26,225 26,250 26,425 
50 50,300 48,000 26,350 26,250 26,425 
100 55,460 53,550 26,800 26,300 26,475 
150 57,975 56,025 27,350 26,375 26,500 
200 59,075 57,450 27,800 26,450 26,525 

125
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