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Abstract: 
Homogenization principles are frequently used for estimation of various parameters 
of composite materials. Their application is most common in the stress-strain analysis 
and electromagnetic theory. In this paper, the utilization of mixing rules based on 
homogenization principles for determination of moisture dependent thermal 
conductivity is discussed. In terms of homogenization, a porous material is 
considered as a mixture of three or four phases, namely the solid, liquid and gaseous 
phase in three-phase systems, and the extra bound-water phase is added in four-
phase systems. 
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INTRODUCTION 
 

 The envelope of any building continuously responds to the changes in indoor and outdoor 
temperature, air pressure and humidity conditions. This results in an exchange of energy and mass 
(air as well as moisture) between the indoor and outdoor environments through the envelope. 
Building physicists refer to these phenomena as “heat, air and moisture transport” through building 
materials and structures [1]. Designers and builders are always interested, especially for economical 
reasons and durability and service live problems, in knowing the long-term performance of building 
envelope, as subjected to the transport processes. That is why the thermal properties of building 
materials appear to be of particular importance for their practical applications whereas the majority 
of them contain significant amount of pores that can be in specific cases filled by water. Every 
catalogue list of any material producer of building materials contains thermal conductivity, 
sometimes also specific heat capacity but they give only single characteristic values mostly that 
represent mainly properties of dry materials. In the dry building material heat transfer is a 
combination of conduction, radiation from the surfaces of the pores and convection within the 
pores. Thus, in a practical use of thermal conductivity all three modes of heat transfer are to be 
counted with. However, absolutely dry materials occur in the conditions of building sites very 
rarely. Also the materials already inbuilt in the structures and exposed to the climatic loading 
exhibit the dependence of their properties on moisture changes. If the material is wet, heat 
transferred by moisture in the capillaries and the enthalpy changes that accompany phase transitions 
also add to the density of heat flow rate. From this appears the necessity to determine thermal 
conductivity of porous materials as a function of moisture content. Since the experimental 
measurement of thermal properties in dependence on moisture is very time consuming, new 
approaches are explored and tested in materials research. In this paper, the applicability of 
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homogenization techniques for determination of moisture dependent thermal conductivity of porous 
building materials is studied.  

 
HOMOGENIZATION THEORY AND MIXING FORMULAS 

 
In terms of homogenization theory, the porous material is considered as a mixture of three or 

four phases, namely the solid, liquid and gaseous phase (in four phase systems, the effect of bound 
water can be included) that forms the solid matrix and porous space of the material.  The solid 
phase is formed by the materials of the solid matrix. The liquid phase is represented by water and 
gaseous phase by air. In the case of dry material, only the solid and gaseous phases are considered. 
The volumetric fraction of air in porous body is given by the measured total open porosity. In case 
of penetration of water, a part of the porous space is filled by water. For the evaluation of thermal 
conductivity of the whole material (i.e., the effective thermal conductivity), the thermal 
conductivities of the particular constituents forming the porous body have to be known. 

The effective thermal conductivity of a multi-phase composite cannot exceed the bounds 
given by the thermal conductivities and volumetric fractions of its constituents. The upper bound is 
reached in a system consisting of plane-parallel layers disposed along the heat flux vector. The 
lower bound is reached in a similar system but with the layers perpendicular to the heat flux. These 
bounds are usually called Wiener’s bounds, according to the Wiener’s original work [2] and can be 
expressed by the following relations 
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where Eq. (1) represents the lower limit and Eq. (2) the upper limit of effective thermal conductivity 
(fj is the volumetric fraction of the particular phase, λj its thermal conductivity). 

The mixing of phases resulting in effective thermal conductivity functions falling between the 
Wiener’s bounds can be done using many different techniques. We will give couple of 
characteristic examples of mixing formulas in what follows which were successfully applied by 
various scientists especially for dielectric mixing in the past and we will introduce them modified 
for thermal conductivity expressions. Only self-consistent formulas will be accounted for which 
allow to model the material behaviour in sufficiently wide moisture range. 

The Lichtenecker’s equation [3] 
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is a straightforward generalization of Wiener’s formulas. The parameter k in Eq. (1) varies within 
the [-1, 1] range. Thus, the extreme values of k correspond to the Wiener’s boundary values. The 
parameter k may be considered as describing a transition from the anisotropy at k = -1.0 to another 
anisotropy at k = 1.0.  

Another mixing treatment was introduced by Rayleigh [4] and a little bit later, with a 
somewhat different theoretical justification, by Maxwell Garnett [5]. It consists in perception of a 
continuous phase 1 (in the particular case of a wet porous medium it is the solid matrix) containing 
randomly distributed spherical scattering particles of discontinuous phases 2, 3 and 4 (in the above 
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mentioned case it is air, free water and bound water, respectively). The formula by Rayleigh can be 
expressed (in a simple extension from the original 2 to 4 phases) as 
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The formula by Maxwell Garnett (extended to the four-phase system again) can be written as 
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The derivation of Maxwell-Garnett’s formula is based on the assumption that the basic 

thermal conductivity of the composite is that of the solid matrix. Bruggeman [6] made a further step 
towards generalization of this treatment and assumed that the basic thermal conductivity is the 
thermal conductivity of the mixture. The resulting formula reads 
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Later, a variety of mixing formulas appeared which reflected the various shapes and 

topologies of liquid and gaseous phase inclusions within the porous medium. In one of the most 
popular models of this type Polder and van Santen [7] extended the Bruggeman formula to elliptical 
inclusions and formulated its three useful simplifications (given in somewhat different algebraic 
form). The first of them, the original one, is valid for spherical inclusions, the second for needle-
shape inclusions and the third for their disc shape. The resulting mixing formulas can be written as 
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Because of the large difference between the thermal conductivity of free and bound water in 

porous medium, Dobson et al. [8] extended the Lichtenecker’s [3] power-law formula and arrived at 
the relation 
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where θbw is the amount of water bonded on pore walls [m3/m3], λbw the thermal conductivity of 
bound water (according to [9], the bound water can be assumed to have the same thermal 
conductivity as ice, so near -20°C it is equal to 2.4 W/mK), λfw the thermal conductivity of free 
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water (0.6 W/mK), λa the thermal conductivity of air (0.026 W/mK), ψ the total open porosity, and 
α is an empirical parameter. 

De Loor [10] used the Polder-van Santen model [7] for disc inclusions and formulated its 
extension in the form 
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where λs is thermal conductivity of solid matrix.  

The introduced mixing models were tested in many practical cases, especially in dielectric 
mixing applications (see e.g. [11], [12]), and their perspectives for determination of moisture 
dependent thermal conductivity seem to be very promising. 
 

CONCLUDING REMARKS 
 

The main objective of the paper was to show the potential for using dielectric mixing models 
based on homogenization theory for calculation of thermal conductivity of partially water saturated 
porous building materials. On the basis of previous applications of Bruggeman’s type mixing 
models and Lichtenecker’s formula for estimation of thermal conductivity of mineral wool boards 
[13] and cement based composite materials [14] it can be concluded that application of 
homogenization techniques can provide useful estimates of measured data even for these highly 
inhomogeneous materials. However, a unified formula could not be found in the whole range of 
moisture content until now and detailed experimental and theoretical analysis is still needed.  
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