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Abstract 
The work describes and analyses a general view of an accumulation core 
method and deduces certain relations applicable for a thermal mode of 
permanent temperature increase. It discusses possible usage of the method by 
measuring thermo physical parameters of materials while presenting 
experimental results acquired with some heat-insulants.  
 
 

1. INTRODUCTION 
 
The work includes a proposal and theoretical analysis of a measuring method for thermo 

physical parameters of materials using so called accumulation core. The accumulation core is a 
body of very good thermal conductivity. Heat penetrates into the body from an outer metal block 
through a measured specimen (sample). Thermal differences in the volume of the metal block are to 
be ignored. The work deduces some general relations applicable for a method of accumulation core 
in case of permanent temperature increase. The method of accumulation core is an integral method. 
It is suitable for measuring parameters of heat insulants within a wide temperature range from low 
up to high temperatures.  

 
2. ESSENTIALS OF THE METHOD 

 
    Essentials of the method of accumulation core are fully displayed in Fig 1. The measured 

specimen S is situated between two metal blocks – the outer metal block MB and the inner block - 
accumulation core AC. The inner block is labeled – accumulation core as it accumulates heat 
penetrating in through the sample from the outer metal block. Theoretically the blocks are of 
infinite thermal conductivity therefore the contact surfaces of the blocks with the specimen 
represent two isothermal surfaces of gradually changing temperature by time. Thus the 
accumulation core AC is a metal block fully immersed in the sample absorbing only the heat which 
penetrated the measured sample. 

Fig. 1 
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Consequently the temperature of the accumulation core is slowly being changed. Based on the 

measured course of temperature of the outer metal block and the course of temperature of the 
accumulation core along with the known thermal capacity of the accumulation core and geometry 
of the specimen it is possible to determine the thermal conductivity of the specimen. The stated 
condition of negligibly small gradients of temperature in both of the metal blocks is easier to be met 
in actual practice in case of smaller temperature flows through the specimen and thus in case of 
specimen of low thermal conductivity. The method of accumulation core is a transient method. It is 
suitable for measuring parameters of heat insulants within a wide temperature range. Such 
measurements require knowledge of thermal dependence of thermal capacity of the accumulation 
core within a particular temperature range. In case of high thermal capacity of the accumulation 
core and thus adequately slow temperature increase the method could be considered quasi-steady. 

 
3. TEMPERATURE CONDITIONS 

 
    Various temperature conditions could be applied by measuring with the accumulation core. 

At first, the general conditions will be discussed and afterwards particular conditions in more detail. 
The most general temperature conditions could use any temperature course T2(t) of the outer block 
registered by a computer. Temperature course T1(t) of the accumulation core is registered in the 
same manner as it represents response of the core to the outer block temperature changes. 
Following the changes of the border temperatures T1(t) and T2(t),  the known thermal capacity of 
the accumulation core and the known specimen geometry the thermal conductivity λ of the 
specimen can be specified. In practical realization of the idea the thermal conductivity of the 
specimen is considered to be a parameter searched by a computer to synchronize the theoretically 
defined temperature course of the accumulation core with the real measured temperature course. 
Differential method is used for the synchronization. A computer simulation of the temperature 
action in the system is used for the theoretical course of temperature of the accumulation core for a 
given value of the parameter λ.  

Next, special temperature conditions of the steady temperature increase of the outer block are 
analyzed.  

 
4. STEADY TEMPERATURE INCREASE CONDITIONS 

 
    Under these conditions the temperature of the outer block is changed linearly in time, in 

practice it increases linearly. Such increase of the border temperature all over the surface 
surrounding the specimen and the accumulation core steadily creates regular temperature conditions 
of the system characterized by linear temperature increase of all the specimen volume (at each point 
of the system) including the accumulation core. After having reached the regular state the created 
profile of the temperature field is “evenly” shifted towards higher temperatures while the speed of 
the temperature shift at each point of the system equals the speed of the temperature increase at the 
outer isotherm.  Next, it will be shown that under the conditions of steady temperature increase a 
coefficient of the thermal conductivity λ of the specimen can be stated as 

 

 λ =

′

−
′

Ac m dT
dt

B
a

dT
dt

j j

ΔΤ
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where the parameter cj  represents a specific thermal capacity of the accumulation core and mj 
represents its weight. A composition of mj.cj represents the thermal capacity of the accumulation 
core. The parameter a is a coefficient of the thermal conductivity of the specimen. The differential 
dT' means an elementary temperature increase at any point of the system and thus of the outer block 
temperature. The derivation dT’/dt indicates the speed of the outer block temperature increase. The 
constants A and B represent characteristic constants of a specific measuring arrangement 
independent from the speed of temperature increase, the thermal capacity of the core and the 
thermal parameters of the specimen. In case of analytical, or computer based numerical, 
determination of the value of the constants for a given system the upper mentioned relation enables 
determination of the coefficient of thermal conductivity λ for any speed of the temperature increase 
and for a specimen of different temperature parameters. It is sufficient to measure a difference      
ΔΤ  = T2 - T1 between the temperature of the outer metal block (outer isotherm) and the temperature 
of the accumulation core (the inner isotherm) and determine the speed of the temperature increase. 
As the right side of the previous relation includes the coefficient a of the thermal conductivity of the 
specimen it seems impossible to determine the coefficient λ unless the first coefficient is known. 
However, a real situation in case of thermal – insulant porous materials is more favourable. When 
taking a closer look, it can be seen that the simplified relation  

 

 
λ =

′Ac m dT
dtj j

ΔΤ  
 

which (unlike the previous relation) does not include a parameter of B/a term represents quasi-
steady approximation with practically steady temperature field of the specimen. The simplified 
relation applies if the heat accepted by the specimen itself is insignificantly small comparing with 
the heat necessary to warm the more massive accumulation core and thus if the thermal capacity of 
the specimen is too small comparing with the thermal capacity of the core. The original relation is 
transformed to the simplified relation if the coefficient of the thermal conductivity and the specimen 
is of a very big value. From this point of view the presence of the parameter with the term B/a in the 
complete relation can be understood as a specification – correction of the quasi-steady method. In 
case of thermal insulants the mention correction tends to be several percent for the thermal capacity 
of the core. Importantly, a majority of a particular error could be eliminated by using an 
approximate value of the coefficient a.  If the coefficient a is known with the accuracy of 20 percent 
a particular correction reduces the inaccuracy from its original e.g. five percent to one percent. A 
value of the coefficient a with a certain accuracy for a given material is usually known or can be 
defined. It is possible to define it based on data on measured thermal capacity, measured weight and 
λ value. A more accurate value of the coefficient a is to be determined upon more accurate λ value 
according to the upper mentioned complete relation. The specification can be done by progressive 
approaching.  
 

5. DERIVATION OF THE THEORETICAL RELATION 
 

The following formula applies for heat entering the system of  “specimen + accumulation 
core” from the outer block in a time period dt   

 

 ∫ ∫−== dtSdgradTdtSddQ .....
rrr

λϕ
 

 
where ϕ is the density of the heat flow on the outer surface of the specimen and the surface “circle” 
diagram applies to the whole outer surface of the specimen. The stated heat is partly used to heat 
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the specimen itself and mostly to heat the accumulation core. The law of conservation of the energy 
for a regular mode with a steady temperature increase determines  

 

 dQ c m dT cmdTj j= ′ + ′  
 

The two previous formulas determine 
 

 adt
TVd

dt
Tdmc

SdgradT jj ′
−
′

−=∫ .
.

.
λ

r

       
 

where  V is the volume of the specimen, a = λ/cρ. The total density of the heat flow ϕ in the 
specimen can be divided in two components. The first component matches the heat proceeding to 
the accumulation core and the second component matches the heat proceeding to the specimen 
itself. Thus ϕ =  1ϕ + 2ϕ. Base on Fourier law we can write  

  

 gradT  = (grad 1 T)+ (grad2 T) 
 

where the first component represents the part of the field gradient responsible for the heat flow to 
the accumulation core (it matches the first term of the right side of the previous formula). Similarly, 
the second component grad2T is responsible for the heat flow to the specimen itself (and it matches 
the second term). Indeed, it is clear that just like the term  gradT the temperature field itself can be 
divided. Thus the function    

 

 T(x,y,z,t) = 1 T(x,y,z,t) + 2 T(x,y,z,t) 
 

because 
 

(grad1 T) + (grad2 T)= grad (1T+ 2T) 
 

The overall profile of the temperature field in the specimen depends also on the speed of 
temperature increase. In regular mode each of the gradient components is directly proportional to 
the speed of temperature increase. Thus we can say that the overall temperature difference ΔT 
between the outer metal block and the accumulation core consists of two parts – a difference of the 
first component of the field and a difference of the second component of the field 

 

ΔT =  Δ1 T +  Δ2 T             
 

The following formula applies for the heat entering the accumulation core in a unit of time 
 

( )c m dT
dt

Tj j
′
≈ λ . Δ1  

 

where Δ1T is the temperature difference of the first component of the field. (By the given speed of 
temperature increase such difference would be formed in case that the thermal capacity of the 
specimen was zero.) A similar formula can be written for the second component of the temperature 
field related to the heat used to warm the specimen  

 

cm dT
dt

T′
≈ λ . ( )Δ2  

 

The temperature difference Δ2T would be formed between the blocks if the accumulation core was 
of zero thermal capacity but very big thermal conductivity and if the thermal capacity of the 
specimen was non-zero. The two last proportions can be defined by equations, but it is needed to 
establish relevant proportion constants. On the ground of some reasons the constants are different 
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for both of the formulas as the profile of the first and of the second temperature field are different. 
The proportions constants will be labeled A and B. The relevant formulas can be written 

 

( )A c m dT
dt

Tj j. .′
= λ Δ1  

B cm dT
dt

T. . ( )′
= λ Δ2  

 

If we formulate the relevant temperature differences present on the right sides and consequently add 
these differences it results in the overall temperature difference ΔT of the metal blocks  

 

Δ Δ ΔT T T A c m dT
dt

B c m dT
dtj j= + =

′
+

′1 2

λ λ
.  

 

As  m  = ρ V ,  a  = λ/cρ , the last formula is  
 

ΔT A c m dT
dt

B V
a

dT
dtj j=

′
+

′
λ

.
 

 

It determines the relation for the coefficient of the thermal conductivity which we wanted to reason.  
 

λ =

′

−
′

Ac m dT
dt
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dT
dt

j j
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If the thermal capacity of the accumulation core is very big and the temperature difference ΔT 
between the outer block and the accumulation core is kept steady the speed of the temperature 
increase is very low. In such a case the second term in the denominator (containing the constant B) 
is very small comparing with the first and it is to be considered insignificant. The last formula turns 
into a simplified form actually describing a quasi-steady process. 

If the thermal capacity of the core is zero the numerator of the last formula is zero. As the 
coefficient λ is generally non-zero the denominator of the last fraction must be zero, which implies  

 

a BV
T

dT
dt

=
′

Δ
 

 

The relation applies only for a fictitious case of the accumulation core of zero thermal capacity. 
However, it can be used by real measuring to determine the constant B for a particular arrangement. 
Then we computer model a thermal action in a system with such a fictitious core (without a thermal 
capacity) by a given speed of temperature increase and known volume V of the specimen and 
selected coefficient a. Based on computer modeling we can determine the temperature difference 
ΔT in regular mode and consequently determine the constant B.  

 

B a T dt
V dT

=
′

. .
.
Δ  

 
A special one is a case when the accumulation core actually does not exist – it shrinks to be a point. 
ΔT determines the temperature difference between the block MB and a given point of the specimen. 
The whole cavity is filled with the specimen.  
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6. THE HEATED ACCUMULTION CORE 
 

In case the accumulation core is heated for instance by an electric stove of thermal output P 
the formula for the coefficient of the thermal conductivity is  

 

λ =

′
−

−
′

A c m d T
d t

P

B
a

d T
d t

j j( )

Δ Τ

 

 

It implies that if the temperature of the outer block is stabilized the stove of the output P heats the 
accumulation core to a stable temperature increased by ΔΤ  where (as dT' /dt = 0) the parameter λ is        

  

λ =
−

=
−

AP AP
T TΔΤ 1 2

 

 

This formula determines the constant A. Computer modeling determines the value of the stable 
difference ΔT between the heated accumulation core (by selected output P, and selected 
conductivity λ)  and the outer block. The constant A is given by the relation A = λ (T1 - T2 )/P . In 
case of easier geometry the constants A and B can be determined analytically.  
 

7. THE PLATE ACCUMULATION CORE 
 

 
Fig. 2 

 
Heretofore we have considered the accumulation core of the ordinary type all immersed in the 

specimen while the outer metal block created a cavity. However, the accumulation core AC could 
be of other shapes.  It could have a shape suitable for a single-dimensional temperature flow. Such 
an accumulation core AC is for instance of the shape of a circular plate and is put between two plate 
specimen S with the outer surfaces heated by bigger metal blocks – metal plates MB. Heat enters the 
accumulation core – the circular plate vertically from both sides. The side temperature flow to the 
accumulation core must be eliminated by a cylinder shield – a metal ring with a regulated heat.   
The outer metal blocks – bigger metal plates are heated by computer controlled electric stoves ES. 
The course of temperatures in three points is registered.  
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8. EXPERIMENTAL RESULTS 
 

 

 
Fig. 3 

 
The method of accumulation core has been used to measure thermal parameters of a thermo-

insulator. On the fig. 3 we can see the dependence of the thermal conductivity coefficient λ of 
commercial polyurethane PUR 5 on temperature.  
 

REFERENCES 
 

[1] Luikov A.V.: Heat and Mass Transfer in capillary-Porous Bodies, Pergamon Press,  
Oxford, 1966 

[2] Krempaský J.: The measurements of the thermophysical Properties, SAV, Bratislava, 
1969 

[3] Vasiliev L.L., Tanaeva S.A.: Thermal properties of porous materials, Minsk, Nauka I 
technika 1971 (in russian) 

[4] Mrlík F.: Moisture induced problem of building materials and construction (in slovak), Alfa, 
Bratislava, 1985 

[5] Jarny Y., Ozisik M.N., Bardon J.P.: A general method using adjoing equation for solving 
ultidimensional inverse heat conduction, Int. J. Heat Mass Transfer 34, 1991,  p.2911 

[6] Alifanov O.M.: Solution of an inverse problem of heat conductyion by iteration method, J. 
Engineering Physics 26, 1972, p. 471 

        


