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Abstract: 
An analytical method using the integral-transform technique is applied to solve 
the non-steady state heat transfer in buildings. The solution was used at the 
identification of building thermal parameters. The achieved results were 
compared with the results of an experimental identification. 

 
 

1. INTRODUCTION 
 

In the last thirty years a great number of calculation models for building thermal performance 
simulation have been created. The following general information on their accuracy and applicability 
are known:  
- The objective of a designer is to search an optimum method of the analysis, dependent on the 
output requirements and the input data and parameters availability. Very detailed and universal 
methods require more parameters and inputs than simpler methods. 
- The simplified models require less parameters and input data however they have a disadvantage as 
they are applicable only for such building types for which they were developed. 
- The thermal performance simulation on a satisfactory level can be provided by the adequate heat 
performance model. Also in a case of the simplified system the most important characteristics of the 
heat transport system should be identified reliably. 

The calculation method suitable for a design and assessment of buildings requires a simple 
heat performance model, concerning the whole buildings or thermal zones, without strong 
restrictions in a geometry, materials, structures and use. The variant energy consumption and indoor 
temperature courses are the required outputs of this model. As the building thermal performance is 
only one of the many aspects of the whole building design, the simple model with a reasonable 
calculation time is still preferred. 

The most simple non-steady state building thermal performance model is the model with two 
nodal points, usually described by the 1st order ordinary differential equation with constant 
coefficients, using the hourly input data. The ratio of the parameters of this equation is a time 
constant of a system which is considered to be a measure of a building thermal inertia. 

Usually the product of total thermal capacity and total thermal resistance of a building is 
considered as a measure of the building thermal inertia. The product is easily calculable and its 
significance as a thermal parameter of building dependent on its mass and heat loss is easily 
understood. In cases when almost a whole building thermal capacity is concentrated in indoor 
structures, whilst their thermal conductivity is higher than the conductivity of an envelope the 
product equals the thermal time constant of a building. In practice that means that the thermal 
performance of a building calculated as the solution of systems of the partial differential equations 
can be in certain cases replaced by the ordinary differential equation with easily calculable 
parameters. 

The simplified dynamic model of the thermal performance of building will be verified by its 
development from the detailed mathematical model represented by the system of partial differential 
equations and energy balance equation for an indoor air. The simplified model is represented by the 
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ordinary differential equation, developed from a detailed mathematical model using the integral-
transform technique. 
 
2. EQUATIONS OF NON-STEADY HEAT TRANSFER BETWEEN BUILDING ENCLOSURE 

AND OUTDOOR ENVIRONMENT 
 

The description of a thermal performance of building will concern the mathematical model of 
a system represented by a building element (room) consisting of planar building structures, creating 
the indoor environment among which the radiation and conduction heat transfer acts. 
Thermophysical properties of the structures are considered to be constant in time and homogeneous 
in each layer. The air change rate in the enclosure is considered to be constant. The selected 
building elements are exposed to the excitations at the building surfaces (convection, radiation) and 
into the indoor air (heating input, auxiliary heat gains). In the solution of this system the following 
simplifying assumptions are used: linearity and stationarity of the system, homogeneity of structural 
layers, one-dimensional heat conduction through structures, a constant air temperature in the space 
and its instantaneous mixing, grey surfaces. The model does not consider a moisture transfer and 
phase changes. 

The model consists of the system of partial differential equations of the heat conduction and 
the energy balance equation for an indoor air, together with the boundary equations complemented 
by the restrictions given to parameters and variables. 
 
2. 1 Heat conduction equation 
 

For each layer – l of each structure – k the partial differential heat conduction equation is 
valid: 
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in the region 0 < xk,l < dk,l for τ > 0, where: 
 
k = 1, 2, ... M 
l = 1, 2, ... N 
 
which is supposed without internal heat sources in a structure. 
 
2. 2 Indoor air energy balance equation 
 

The indoor air temperature, considering the introduced simplifying assumptions, is governed 
by the differential equation: 
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where: Φι(τ) represents the total heat flow into the air 
  Ci is the total indoor air heat capacity 
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3. BOUNDARY CONDITIONS 
 

The boundary conditions are defined for both surfaces of each wall and for the indoor air. 
Their number is then 2M + 1, where M is the number of walls. Here the interstitial boundary 
conditions are included. 
 
3. 1 External walls surfaces 
 

The heat flow penetrating through an external wall surface – k is the result of: 
- convective heat transfer: αeck [te(τ) − τk,1(0,τ)] 
- long wave radiation transfer between external surface and outdoor environment, which will, 

after the linearization be expressed by the relation αerk [ter(τ) − τκ,1(0,τ)] 
- direct and diffuse solar gains Ek,1(0,τ). 

 
The total heat flow, penetrating through the external surface to the wall – k is then obtained 

from the expression: 
 

 Φk,1(0,τ) = [αeck . te(τ) + αerk . te,r(τ) + Ek,1(0,τ)].Sk – (αeck + αerk) . Sk.tk,1(0,τ)  (3) 
 

which can be written as: 
 

 Φk,1(0,τ) = − αek.Sk . tk,1(0,τ) + Φ´k,1(0,τ) (4) 
 

where αek is the surface convective and linearized long-wave radiation heat transfer coefficient 
Φ´k,1(0,τ) represents the part of the heat flow Φk,1(0,τ) independent on the building 
thermal state 

 
The boundary condition at the external surface (x = 1, l = 1) has a general form: 
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for τ > 0. 
 
3. 2 Wall layers interstices 
 

Under the assumption that thermal contacts between particular layers is ideal, the 
temperatures and heat flows continuity, penetrating the layers l and l + 1 of the wall – k is described 
by: 
 

 tk,l(d,τ) = tk,l+1(0,τ)  (6) 
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3. 3. Internal wall surfaces 
 

Solving the complex heat transfer problem in the interior the assumption of linearity is 
suitable. Furthermore the components of heat flows impinging the internal surfaces dependent on 
the thermal state of room will be separated from the components independent on the thermal state, 
computable as a part of external excitations. The former components represent thermal bonds 
among particular structures. The total thermal flow impinging to the internal surface includes 
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various excitations (solar gains, part of heating input, auxiliary heat gains) and also the heat transfer 
by: 
- the infrared radiation among internal surfaces 
- the natural convection among indoor air and internal surface of the room. 
 
3. 4 Vector of long-wave radiation heat flows among internal surfaces of the room structures 
 

The infrared heat transfer among M grey internal surfaces is given by the equation: 
 

 eJE =⋅  (8) 
 

 r
iΦJF =⋅  (9) 

 

where:  Φ´r  is the vector of a total heat flux through surfaces 1 – M 
  J  is the vector of heat flux densities by long wave radiation among surfaces 1 – M 
 

 

∑

∑

∑

=

=

=

−−

−−

−−

=

M

k
MkMMMMM

M

M

k
k

M

M

k
k

SSS

SSS

SSS

1
21

22
1

22212

11121
1

11

ϕϕϕ

ϕϕϕ

ϕϕϕ

L

MOMM

L

L

F  (10) 

 

Sk
  is the surface area of structure - k  

ϕkk is the shape factor for radiation from surface k to surface - k 
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 e = [e1T1,N(d,τ), e2T2,N(d,τ), ..., eMT1,M(d,τ)]T (12) 
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εk   is the emissivity of a surface – k 
is the Stefan-Boltzmann constant 

Tk,N(d,τ)  is the absolute temperature of a surface – k 
 

Under the assumption that it is possible to find the corresponding mean value ek for each 
surface it is possible to express from equations (8) and (9): 
 

 Φr
p = F.ε−1.e = Gr [T1,N(d,τ), T2,N(d,τ), ..., TN,N(d,τ)]T  (14) 

 

where: 
 

Gr = F.ε−1diag [e1, e2, ..., eM] is the matrix of a long wave radiation heat transfer among the internal 
surfaces of a room. 
 

The long wave radiation heat flows vector for internal surfaces of particular structures is then: 
 

 Φr
p(τ) = Gr.tp(τ) - Φr/

p(τ) (15) 
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 tp(τ) = [t1,N(d,τ), t2,N(d,τ), ..., tM,N(d,τ)]T (16) 
 

is the vector of room internal surfaces temperatures, and:  
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where:  ),(/
, τdr
NkΦ  represents the part of  radiation heat flow impinging to the surface – k, 

independent on the thermal state of a room. 
 
3. 5 Vector of convective heat flows between indoor air and walls 
 

The vector of convection heat flows between indoor air and internal room surfaces can be 
written strightly: 
 

 Φc
p(τ) = Gc.tp(τ) – gc.ti(τ) (18) 

 

where: 
 

 Gc = diag [S1αic1, S2αic2, ..., SMαicM] (19) 
 

 gc = [S1αic1, S2αic2, ..., SMαicM]T (20) 
 

αick is the internal convective surface heat transfer coefficient, supposed to be constant in time 
 
ti(τ) is the indoor air temperature supposed to be constant in space 
 
3. 6 Heat flow into the room indoor air 
 
The total heat flow penetrating into the indoor air includes:  
 
- the internal gains Φ+

i(τ) 
- the air change at the temperature te: Φm.ce[te(τ) - ti(τ)] 
- the convective surface heat transfer for structure – k: 
 

 αick.Sk [tk,N(d,τ) - ti(τ)] (21) 
 

In general, then it can be written: 
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where: 
 

 Φ/
i(τ) = Φ+

i(τ) + Φm.ce.te(τ) (23) 
 
is the component independent on the thermal state of a room. 
 
3. 7 General expression for indoor boundary conditions 
 
The heat transfer in an interior can be on the basis of the parts 3.5 and 3.6 described by the matrix 
expression: 
 

 Φ(τ) = G.t(τ) - Φ/(τ) (24) 
 



THERMOPHYSICS 2006 Proceedings of the seminar 
 October 2006 
 

41

which can be itemized with use of block matrixes in the form: 
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Φ(τ), t(τ),Φ/(τ) are the vectors with M+1 elements. 
 
The matrix g(M + 1, M + 1) is symmetrical with positive diagonal elements. Other its elements are 
negative. G is the matrix of thermal bonds among particular elements in the interior. 
 
The boundary condition for internal surface of the wall k (l = N, x = d) in a general form is: 
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4. SOLUTION WITH USE OF INTEGRAL TRANSFORM TECHNIQUE 

 
For the solution of non-homogeneous heat conduction equations with non-homogeneous 

boundary conditions the method of integral transform is suitable. At the solution of a heat condition 
problem by this method with use of integral transform the second partial derivations according to 
the space coordinates are excluded and the heat conduction problem is reduced to the ordinary 
differential equation. The resulting differential equation is then solved for a transformed boundary 
condition of given problem. From the integral transform of temperature function obtained by this 
way it is possible easily to get the required solution of the problem. The method is developed from 
a classical method of the separation of variables.  
 
4. 1 Separation of variables 
 

Let us consider the solution of the heat transfer problem formulated by the equations (1) and 
(2) for a homogeneous version of boundary conditions (4) and (26). The solution of this problem 
supposes the separation of variables in the form: 
 

 tk,l(x,τ) = Ψk,l(βn,x).ϑk,l(τ) (27) 
 

After putting the expression (27) into the equations (1) and (2) two separated differential equations 
result: 
 
For the variable ϑk,l:  
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For the function Ψk,l(βn,x): 
 
- for each layer – l of each wall - k 
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- for the indoor air 
 

 Φi(τ) − βn.Ci.Ψi(βn). ).ϑk,l(τ) = 0 (30) 
 

The index n expresses the fact that an infinite number of discrete values of β1, β2, β3 …  βn and the 
corresponding functions exists. 

The boundary conditions for equations (29) and (30) are obtained introducing the relation (27) 
into the homogeneous version of boundary conditions (4) and (26). Then it is valid: 
 
- for the external surface of wall k 
 

 Φk,1(0,τ) + αekSkΨk,1(βn,0) = 0 (31) 
 

- for the interstice of  layers l and l + 1 of wall - k 
 

 Ψk,1(βn,d) = Ψk,l+1(βn,0) (32) 
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- for the heat transfer in indoor space 
 

 Φ = G . Ψ (34) 
 

The solution of the equations (28) and (29) for the boundary conditions (31) and (34) 
represents the problem of finding eigenvalues and the corresponding eigenfuctions. For the found 
discrete spectrum of eigenvalues and the corresponding eigenfunctions the representation of a 
temperature function by the eigenfunctions for the layer  - l of the structure – k is considered in the 
form: 
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when the summation is given for the whole discrete spectrum of eigenvalues, whilst:  
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The relation (36) gives after the putting into (35) the expression for inverse transform: 
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whilst the expression for integral transform is: 
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N(βn) is the normalization integral: 
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4. 2 Eigenvalue problem 
 

The integration of the relation (29) for a wall enables to express the eigenfunction and the 
connecting heat flow at an internal surface of arbitrary wall as the function of heat flow and 
eigenfunction (equal to zero in this case) at the external wall surface: 
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The matrix Mk with the elements Ik, Jk, Kk, Lk is the parametric function of βn. It is the product of 
transfer matrices of each layer with the transfer matrix Mk,e: 
 

 Mk = Mk,N. Mk,N-1 .... Mk,1. Mk,e (41) 
 

where: 
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The relation (40) results from the conditions of continuity of temperatures and heat flows 
between particular layers of a structure (31) - (33). 
The transfer matrix of the layer – l and structure – k has the form: 
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where:  bk,1 is the thermal admittance of layer l 
 
From the expression (40) M pairs of the relations conclude: 
 

 Ψk,N(βn,d) = Jk(βn).Φk,1(βn,0)  (44) 
 

 Φk,N(βn,d) = Lk(βn).Φk,1(βn,0) (45) 
 

For the indoor air of a room it is possible to write: 
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Analogously: 
 

 Ψi(βn) = Ji(βn).Φi(βn) (47) 
 

 Φi (βn) = Li(βn).Φi(βn) (48) 
 

Together with the relation (32) a set of the equations (44) – (48) can be written in the form of matrix 
equations: 
 Ψ = J(βn).Φe (49) 
 

 Φ = L(βn).Φe (50) 
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 Φ = G.Ψ (51) 
 

Φe, Φ,  Ψ are vectors with M + 1 elements, 
J(βn) and L(βn) are diagonal matrices. 
 

From the above mentioned relations the following relationship results: 
 

 [G.J(βn) – L(βn)]Φe = 0  (52) 
 

The condition of a non-zero solution of this relationship is the validity: 
 

 det[G.J(βn) – L(βn)] = 0 (53) 
 

The relation (53) represents the transcendent equation with the infinite number of real roots, which 
are equal to the eigenvalues of the problem defined by equations (29) and (33). For each known 
eigenvalue the linear system of homogeneous equations (52), solution of which is the vector βn 
necessary for the calculation of eigenfunctions can be established. 
 
4. 3 Integral transform of heat conduction problem 
 

Determining the integral transform and the inverse integral transform a further step of the 
analysis is the exclusion of partial derivations according the space variables from the partial 
differential equation with use of integral transform (38). The system of ordinary differential 
equations for the transformed temperature will then result: 
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The initial conditions for this equation can be obtained by the integral transform of the initial 
conditions. 
The solution of the equation (54) by the variation of constants method for the initial condition 
( )0,nt β  gives the transformed temperature: 
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The inverse transform of the expression (55) gives the temperature distribution in structures of 
a room: 
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The solution is valid for the boundary conditions of 3rd kind at all surfaces. An alternative form of 
the solution (56) can be obtained by its integration by parts. Then the solution is decomposed into 
three groups of simpler solutions – one quasi-stationary and two non-stationary ones. 
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4.4 Heat transfer in room 
 

The thermal performance of a room can be then described by two matrix equations issuing 
from the relations (54) and (56): 
 

 /ΦBTAT
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τd
d  (57) 

 

 /ΦDTCT ⋅+⋅=  (58) 
 

T  and T  are the vectors of transformed temperatures and temperatures of the dimension ∞  
B   is the matrix of the ( ∞ , 2M + 1) type 
A   is the quadratic diagonal matrix of dimension ∞ , with elements Ann = (βn) 
Φ/   is the vector of 2M + 1 thermal excitations 
C   is the matrix of type (M, ∞ ) 
D   is matrix of type (M, 2M + 1) 
 
The matrix D concerns the quasi-stationary component of the solution and it is given by the 
relation: 
 

 BACD 1−⋅=  (59) 
 

The foursome of the matrices A, B, C, D is a complex characteristics of the heat transfer between 
the room and outdoor environment. The solution of the differential equation (57) can be obtained by 
the variation of constants method, if the thermal excitations have a simple course (the shape of step, 
triangle or sine). 
 

5. IDENTIFICATION OF BUILDING EQUIVALENT THERMAL PARAMETERS 
 
 If only the first eigenvalue is significant, the heat transfer in a room can be modelled by 1st 
order differential equation and indoor space energy balance equation with the following parameters: 
the total thermal resistance between indoor and outdoor temperatures - Ro, the total thermal 
resistance between the nodal point for indoor temperature and nodal point for internal structures - Ri 
and the total heat capacity of a room - C: 
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As the equations (60) and (61) are analogous to the equations (57) and (58), the following 
relationships among the parameters of detailed analytical and simplified equations are valid: 
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With use of the relationships (63) and (64) the parameters Ro, Ri and C were identified from a 
detailed heat transfer model and compared with the equivalent thermal parameters of various 
buildings obtained from the actual measured data. The supposed air change rate for all analysed 
objects was 1 h-1. 
 
5. 1 Object No. 1 movable residential cell 
 
First eigenvalue: β1 = 5.10-5 s-1 
Integral transform of the initial temperature: ( ) 6

1 10562160 ⋅= .,t β  
Normalization integral: N(β1) = 1.017.108 
 
Structure 1 2 3 4 5 6 7 
ψk,N(β1,d) 8.37 7.55 4.21 3.94 4.59 7.49 4.59 
ψk,1(β1,0) 0.54 0.55 0.90 1.12 1 5.29 1 
 
For the indoor air ψi(β1) = 5.67 
 
Total heat loss at the unit temperature difference 1/Ro = 67 W/K.  

The contribution of the term corresponding to the first eigenvalue to the exact solution of 
indoor air temperature at the steady state and the constant unit diffuse solar radiation flow (0.0139 
K) represents: 
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which represents 52% of the exact value. That means that the thermal performance of the object can 
not be modelled satisfactorily by the expected ordinary differential equation. This is logical, as the 
building heat capacity is located in its envelope - not concentrated in indoor structures (as it was 
supposed in the introduction).  

The contribution of the term corresponding to the first eigenvalue to the exact solution of 
indoor air temperature suddenly after the time τ = 0 during the cooling with unit initial temperature 
is: 
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Equivalent  
thermal parameter 

Analysis Experiment 

1/Ro [W/K] 67 66 
1/Ri [W/K] 288 318 
C [J/K] 1340000 1043288 
 
 
 
5. 2 Object No. 2 classroom 
 
First eigenvalue: β1 = 2.95-6 s-1 
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Integral transform of the initial temperature: ( ) 8
1 1013250 ⋅= .,t β  

Normalization integral: N(β1) = 49.318.106 
 
Structure 1 2 3 4 5 6 7 
ψk,N(β1,d) 1.14 1.05 0.64 0.52 0.98 0.98 0.98 
ψk,1(β1,0) 1.18 1.06 0.04 0.14 1 1 1 
 
For the indoor air ψi(β1) = 0.84 
Total heat loss at the unit temperature difference 1/Ro = 170 W/K 

The contribution of the term corresponding the first eigenvalue to the exact solution of indoor 
air temperature at the steady state and the constant unit diffuse solar radiation flow (0,0059 K) 
represents: 
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This is ca 100% of the exact value and confirms the neglecting all members of a series in the 
solution, instead of the first one. 

The contribution of the term corresponding to the first eigenvalue to the exact solution of 
indoor air temperature suddenly after the time τ = 0 during the cooling with unit initial temperature: 
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Equivalent  
thermal parameter 

Analysis Experiment 

1/Ro [W/K] 170 209 
1/Ri [W/K] 1719 1900 
C [J/K] 57646660 59016384 
 
5. 3 Object No. 3 bedroom 
 
First eigenvalue β1 = 2.38-6 s-1 
Integral transform of the initial temperature ( ) 8

1 1013250 ⋅= .,t β  
Normalization integral N(β1) = 2.432.1010 
 
Structure 1 2 3 4 5 6 7 
ψk,N(β1,d) 49.12 48.21 48.78 27.35 47.12 46.25 44.75 
ψk,1(β1,0) 51.6 48.7 1.7 7.63 47,6 46,4 1 
 
For the indoor air ψi(β1) = 41.53 
 
Total heat loss at the unit temperature difference 1/Ro = 27 W/K. 

The contribution of the term corresponding the first eigenvalue to the exact solution of indoor 
air temperature at the steady state and the constant unit diffuse solar radiation flow (0,037 K) 
represents: 
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which is 92% of the exact value.  
The contribution of the term corresponding to the first eigenvalue to the exact solution of 

indoor air temperature suddenly after the time τ = 0 during the cooling with unit initial temperature: 
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Equivalent  
thermal parameter 

Analysis Experiment 

1/Ro [W/K] 27 33 
1/Ri [W/K] 198 210 
C [J/K] 11335013 13016772 
 
The identification of the equivalent thermal parameters of three different buildings confirmed the 
correctness of the application of simplified model. The values obtained by the experiment, 
compared with the values obtained analytically were in a good agreement. 
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6. CONCLUSIONS 
 
An analytical method using the integral-transform technique was applied to solve the non-steady 
heat transfer in buildings. 
The solution was used at the identification of equivalent building thermal parameters. 
The achieved results were compared with the results of experimental identification. 
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