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Abstract 
Different Inverse Heat Transfer Problems (IHTP) have been formulated and 
classified. An algorithm for the solution of inverse problems by means of the 
sensitivity coefficients method has been suggested, applying the simplest – but 
most effective – objective function. Considerable attention has been paid to the 
preparation of experiments from numerical (mathematical) point of view, aiming 
at measurements of temperature at the boundary of the investigated object, to 
be used later as input data in the inverse analysis, reproducing e.g. the 
boundary conditions or thermal conductivity. Attention has been paid rather to 
the procedure and less to mathematical formalism. At the end of the paper the 
most important monographs are quoted for those who are interested in the 
solution of the theoretical and practical inverse heat transfer problems. 
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1. INVERSE PROBLEMS OF THERMAL CONDUCTION 
Blank line 12pt 
The temperature in a given area ( ) ( ) ( ) ( ), , , 1, 2,3ix y z x iΩ = Ω = Ω = Ω =x  is described by 

the following differential equation: 
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together with the respective boundary and initial conditions: 
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 ( ) ( )0,0   = ∈ΩT T forx x x  (4) 
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This means that if the causes are known, viz. 
• the heat fluxes qi and the efficiency of heat internal sources qV [W/m3], 
• the heat transfer coefficients (function) hj = const or hj = hj (x) [W/m2K], 
• thermophysical parameters: the heat conduction coefficient (function) kk = kk(T) 

[W/m K], the specific heat ck = ck(T) [J/kg K], the density of the material(s) ρk = ρk(T) 
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[kg/m3], or the heat capacity Ck = ckρk [J/m3K] whose in some specific cases may be 
functions of the temperature, 

• the initial distribution of temperature T0 (in most cases, it is a constant value over the 
whole area/space Ω), 

• the geometry (dimensions) of the analysed object, 

then the solution of the initial boundary problem (1) - (4) permits to find the result, i.e. the 
temperature distribution in each point of the area Ω at every moment t∈(0,∞). 

Let’s denote the set of given above parameters as 
Blank line 6pt 

 { }q h1 1 V 0, , , , , , , , ,dimesionsN Nq q h h k c q Tρ=S L L  (5) 
Blank line 6pt 

In many engineering problems analysed in practice some of the physical quantities in the set S (let’s 
denote them as SN ⊂ S) are, however, unknown, but it is possible to measure the temperature at 
selected points on the surface or inside the investigated object in the course of the process. The 
question arises whether it is possible to determine the elements of the set SN making use of 
equations (1) - (4) and basing on the known temperature at the measuring points? The problem 
quoted in such a way has been called Inverse Heat Transfer Problem (IHTP). 

The question quoted above cannot be answered unequivocally, due to errors committed while 
measuring the temperature and the erroneous determination of the parameters treated as present 
values (the set S\SN). From the mathematical point of view this problem is called an ill-posed or ill-
conditioned problem (cf. [1], [4], [9], [10]). Looking a bit ahead we may assume that the final set of 
equations concerning this problem takes the form 

Blank line 6pt 

 =Ay b  (6) 
Blank line 6pt 

where the operator A and the vectors y and b belong to the respective mathematical spaces are not 
determined here; the vector y consists of the elements of the set SN, whereas the vector b results 
from the measurements of temperature. If the problem is well-posed, this means that (Hadamard’s 
conditions [9], [11]): 

• for each vector b there is an unique solution of the set of equations (6), 
• the solution is stable due to errors in the determination of the vector b, in other words 

when the error in the determination of the temperature aims at zero (and thus the error 
of the vector b), then the error in the solution (vector y = A-1 b) aims at zero, too. 

Most inverse problems do not satisfy these conditions, but that does not mean that in many cases it 
would not be possible to reach solutions which are useful from the engineering point view (e.g. [1], 
[5], [6], [9]). 

Blank line 12pt 
2. VARIOUS KINDS OF INVERSE PROBLEMS 

Blank line 12pt  
There are various kinds of inverse problems concerning the heat transfer, depending on the 

composition of the set SN, viz. 
• Inverse boundary problems when { }q h1 1,..., , ,...,N N Nq g h h=S , i.e. when the boundary 

conditions are not known. 
• Inverse parameter or function estimation problems, when the solution aim is the 

determination of one or more thermophysical parameters characterising the properties 
of the material (or materials) constituting the investigated object 
( { }k k k1 1 1,..., , ,..., , ,...,N N N Nk k c c ρ ρ=S ). 
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• Inverse geometrical problems, when we want to determine one or more quantities 
describing the geometry of the analysed area, i.e. when, for instance, 

{ }dimension of geometry, . . ,N e g R H=S . 

• Inverse initial problems, when initial temperature is wanted - { }0N T=S . 
• Inverse mixed problems: 

{ }q h k k k1 1 1 1 1 0,..., , ,..., , ,..., , ,..., , ,..., , , ,N N N N N Nq g h h k k c c T R Hρ ρ=S . 

Literature quotes numerous techniques (methods) of formulating and solving inverse 
problems (cf., e.g. the list of techniques quoted by Özisik [7],[11]), in most cases, however, they are 
reduced merely to the determination of the minimum of the adequately defined object function, 
applying various methods of minimization by various ways of stabilizing the solution. In this paper 
only the fundamental, most often applied method will be dealt with. 

Blank line 12pt 
3. FORMULATION OF THE INVERSE PROBLEM 

Blank line 12pt 
Let’s assume that 

• the area of the investigated object amounts to Ω, being not necessarily homogenous, it 
may, for instance consist of several areas with different mechanical and thermal 
properties, is bounded by Nb surfaces, 

• the distribution of temperature in the area Ω can be described by the 
equations (1) - (4), 

• it is possible to measure the temperature on the boundary of the area at Np points with 
known coordinates and at Nt moments (point of time) - Nt measurements, 

• Nn elements (parameters) in the set S (equation (5)) are unknown. Let’s order these 
parameters, called design parameters (DP), in the form of a vertical column (vector) 
YT where the symbol {.}T denotes the transpose of the vector/matrix. 

We are trying to find such a vector Y where the square of temperature differences measured at 
the measuring points U and the respective temperatures T(Y) obtained by solving the problem 
(1) - (4) is the smallest, i.e. we are trying to find Y from the condition 

Blank line 6pt 

 ( ) ( ) ( )T
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The columns T and U contain the respective temperatures determined by solving a direct problem 
and those measured at Np measuring points in Nt moments of time, viz. 
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In both these formulae the subscript denotes the number of measuring point and the superscript - the 
number of the given measurement. 
The functional (7) is an objective function and if developed, it takes the following form 
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The necessary minimum condition of this functional is reduced to Nn equations expressed as 
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or in the form of a matrix 
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The matrix Z with the dimensions n p tN N N× ⋅  is called the sensitivity matrix; its elements are the 
respective derivatives 

Blank line 6pt 
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called sensitivity coefficients (SC). They determine how far the j-th design parameter Yj affects the 
temperature in the i-th measurement point at the k-th moment (measurement). The low value of this 
index means that a large change of the parameter Yj leads to a small – sometimes even 
immeasurable – change of temperature in the measuring point. Therefore, the results of such 
measurements may prove to be of no use from the viewpoint of inverse analysis, whose aim it is to 
determine (estimate) this parameter. 

Blank line 12pt 
4. ALGORITHM FOR THE SOLUTION OF INVERSE PROBLEM 

Blank line 12pt 
Further on we shall discuss an iterative way of finding the minimum of the functional (7), and 

thus also an iterative solution of the inverse problem. The presented algorithm is called sensitivity 
coefficients method (cf. [9], [12], [14]). 

Let’s assume that the temperature in the n-th iterative step can be replaced by its Taylor 
expansion versus the temperature known from the iteration (n - 1), obtained by the solving the 
direct problem concerning the previously determined design variables ( )1n−Y . Thus, reducing the 
expansion to a linear term, the temperature may be expressed by the relation 

Blank line 6pt 

 ( ) ( ) ( )( )( ) ( 1) ( 1) ( ) ( 1)n n n n n− − −= + −T Y T Y Z Y Y Y  (14a) 
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or in a shortened way as 
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 ( ) ( )( )1 1n n− −= + −T T Z Y Y  (14b) 
Blank line 6pt 
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where the following expressions are introduced: ( ) ( )( ),    n n= =Y Y T Y T . 

Substituting the relation (14) into the condition (12) we get the following algebraic set of equations 
expressed in matrix form 

Blank line 6pt 

 =Ay b  (15) 
Blank line 6pt 

where 
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  ( )( )T ( ) ( 1) ( 1), ,n T n n− −= = = − +A Z Z y Y b Z T Y U ZY . (16) 
Blank line 6pt 

The successive stages of the algorithm are as follow: 
Stage I: Initial guess for Y, n = 0, i.e. (0) *=Y Y   
These values may, in principle, be arbitrary, but ought to approximate as much as possible the 

expected solution (which, of course, requires some experience and knowledge of the analyzed 
problem). In result we get the temperature at the measurement point ( ) ( )(0) * *= =T Y T Y T  

Stage II: Determination of the sensitivity coefficient matrix Z, and next, from equation (15), 
the new values of the design variables ( )nY  and by means of the relation (14) the corresponding 
temperature T. 

Stage III: Verification of the convergence condition of the solution, e.g. expressed like this 
(cf. [4], [11]) 

Blank line 6pt 

 ( ) ( )1n n−− <Y Y ε  (17) 
Blank line 6pt 

where ε denotes the present admissible difference between two successive solutions. If the 
condition (17) is not satisfied, we assume that ( )* n=Y Y  and n becomes n - 1 and then the stage II 
of the algorithm is repeated (perform next iteration). 

Blank line 12pt 
5. SENSITIVITY ANALYSIS 

Blank line 12pt 
When preparing an experiment in which temperature is the basic quantity for further analyses 

and the equations which describes its distribution in the analyzed object is a heat conductivity 
equation (1) including the respective boundary conditions, then we must assess to which extent the 
respective quantities in the set S influence the temperature measured at the selected measuring 
points. The sensitivity analysis being a part o the experiment applied in inverse problems permits to 
determine 

• the best position of the measuring points, 
• which ones from among the unknown quantities can be determined basing on 

temperatures measured in selected boundary points or inside the object, 
• those quantities (e.g. geometrical dimensions, ambient temperature), which must be 

measured (or determined experimentally) as accurately as possible, being 
indispensable for the solution of the heat transfer problem, and which of them are less 
important and may be only assessed, 

• those quantities which due to the accuracy of the instruments measuring the 
temperature cannot be used as design variables. 

Measures of the influence on temperature are the previously defined sensitivity 
coefficients (13), which cannot, however, be compared in their original form. Therefore, in order to 
assess the influence of various parameters we apply dimensionless sensitivity coefficients. 
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The dimensionless sensitivity coefficient of the parameter jY  is defined as (cf. [11]) 
Blank line 6pt 
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where q is the heat flux which essentially affects the temperature distribution in the area Ω ; L is the 
characteristic dimension of the investigated sample (e.g. its height), and k is the heat conductivity 
coefficient of the material of which the sample has been made. 
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6. EXEMPLARY PROBLEM 

Blank line 12pt 
In order to illustrate conceptions mentioned above and the methods of such a procedure let’s 

formulate an exemplary technical problem (cf. [2], [12], [14], [15], [16],). 

Let’s assume that an axially symmetrical temperature field is analyzed in an area consisting of 
two cylinders – ( ) ( ), ,m m mr zϕΩ =Ω = Ω x  1, 2m =  (see Fig. 1) with different physical properties: 

the thermal conductivity ( )m mk k T= , the specific heat ( )m mc c T=  and the density mρ  Let’s also 
assume that the parameters of the first cylinder depend on temperature. Let the base of the first 
cylinder be heated by the heat source qs. Finally, we assume the third kind of the boundary 
conditions on the lateral surfaces. 

Mathematically the distribution of temperature on the particular subareas is expressed by 
Fourier’s equation noted in the axial symmetric ( ) ( )( ),φ, ,r z r z= =x  cylindrical co-ordinate 
system 
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supplemented by the respective boundary conditions 
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the conditions of continuity (without resistance hq) on the boundary of the subareas 1i  r R z H≤ =  
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and the initial conditions 
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 ( ) ( )0,0 , 1, 2m mT T m= =x x  (23) 
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The symbols h1, h2, ht denote in these formulae the respective hear transfer coefficients on the 
lateral surfaces of the cylinders and on the base of the second cylinder, whereas Ta denotes the 
ambient temperature. 

 

Figure 1. The analyzed area 

Let’s, moreover, assume that the temperature is measured on the lateral surface of the sample 
at m equally spaced points, making use of a infrared camera, so that in our further analysis we shall 
have at our disposal a large number of extremely accurate measurement data. We also assume that 
the upper cylinder has been made of homogeneous material (called reference material) with known 
physical parameters, determined with a high accuracy. 

The temperature field depends on the following parameters or functions: 
• material parameters: ( ) ( )1 1 1 2 2 1 2, , , , , ,k T c T k cρ ρ ρ  

• boundary parameters: ( ) ( )s 1 2 t a 0, , , , ,q h z h z h T T  
• measurement parameters: position of the initial and final point of the read-out of the 

temperature – pocz kon,z z  
• geometrical parameters: 1 2, ,R H H  
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k = k (T )  &  c = c (T )
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Figure 2. The temperature dependence of the thermal conductivity and the specific heat 
Blank line 12pt 

Let’s assume that the material functions change linearly form the values ( )L Lk k T=  and ( )L Lc c T=  
- at lower temperature LT  – to the values ( )H Hk k T=  and ( )H Hc c T=  – at the temperature HT  (see 
Fig. 2). The heat transfer coefficient changes linearly versus the height (variable z) from the value 

( )B 0h h=  at the base to ( )M 1h h H=  at the boundary of the cylinders and to ( )T 2h h H=  at the 
highest point of the side surface (see Fig. 3). Let the heat transfer coefficient on the upper surface be 

t consth = . 

h = h(z)
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Figure 3. Changes of the heat transfer coefficient along the side surfaces of both cylinders 
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7. DIMENSIONLESS SENSITIVITY INDICES 
Blank line 12pt 
In the considered problem the sensitivity coefficients for the respective measurement points 

were determined by approximating the derivatives by the respective difference quotients, i.e. 

cH = c(TH) 

cL = c(TL) 

kL = k(TL) 

kH = k(TH) 

TL TH 

hT hM hB 
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in which case the vector Y provides 18 quantities: 
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 { }L H L H 1 2 2 2 s B M T t pocz, kon 1 2, , , , , , , , , , , , , , , ,k k c c k c q h h h h z z R H Hρ ρ=Y  
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Thus, in order to determine the coefficients 1 + 18 the direct problems (1) - (4) must be 
solved: first for those concerning the values of all the parameters, and then successively for the 
changed value of only one of them increased by jYΔ  (where index j is changing from 1 to 18). 
From each solution, the temperatures in equation (24), in the respective measuring points are used 
for all the present moments of time. The eight diagrams on Fig. 4 and 5 illustrate only some results 
of the analysis of the considered problem. Each diagram contains three curves showing how the 
value of the dimensionless coefficients of sensitivity changes in time at three measurement points 
on the side surface of the cylinders: the lowest one hB (at the base), that in the middle hM and that in 
the highest position hT. In all these diagrams the axis of abscissas is the axis of dimensionless time 
defined as 

Blank line 6pt 

 L

L 1 2

k t
c H

τ
ρ

=  

Blank line 6pt 

The subsequent diagrams present the dimensionless sensitivity coefficients concerning the 
following parameters: L H L H B M T t, , , , , , ,k k c c h h h h  

The analysis of these diagrams (and also of those not presented in this paper) and of the 
solution of many inverse problems (concerning the configuration described above) leads to the 
following conclusions: 

• The optimal dimensionless time of heating is contained within the range (interval) 
( )0.15; 0.25kτ ∈  because the effect of most parameters on the temperature 

distribution becomes stabilized (frequently on a level approaching zero) or changes at 
the same rate (the curves of different parameters are almost parallel). 

• In the most measurement points the temperature is most affected by such parameters 
as the heat flux sq , the ambient temperature aT , the heat transfer coefficient Bh  in the 
vicinity of the heating element, the thermal conductivities L H,k k  and the specific heat 

Lc . The second parameter describing specific heat - Hc  - exerts a considerable 
influence on the temperature only at the measurements points situated at the half 
height of the sample, so that its determination is connected with larger errors than 
other design parameters. 

Dimensionless SC for  k L

-0.02
-0.015
-0.01

-0.005
0

0.005
0.01

0.015

0 0.1 0.2 0.3 0.4
time t /t c

Bottom Middle Top
 

Dimensionless SC for  k H

-0.03
-0.02
-0.01

0
0.01
0.02

0 0.1 0.2 0.3 0.4
time t /t c

Bottom Middle Top
 



THERMOPHYSICS 2006 Proceedings of the seminar 
 October 2006 

12

Dimensionless SC for  c L
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Figure 4. Dimensionless sensitivity coefficients for thermophysical parameters 

• The heat transfer coefficients t T,h h  on the surfaces remote from the heating element 
(side surface of the upper cylinder and the upper base) influences the temperature 
measurements least. 

• Quantities with large sensitivity coefficients are found in the inverse analysis rather 
accurately, even in the case of considerable (about 1 K) measurement errors (assuming 
that measurements are taken by means of highly sensitive infrared camera [3], [8]). 

• Geometrical quantities indicate a considerable influence on the temperature 
distribution in the object, but most often solving inverse problems does not estimate 
them, because they can be measured with a good accuracy. 

• The influence of the parameters 2 2 2, ,k c ρ  (reference material) is only small, which is 
advantageous because of possible errors occurring in the case of applying classical 
methods of measurements – it is assumed they are known as the reference parameters 
for inverse analysis. 

• From the point of view of IR measurements an extraordinarily sensitive parameter is 
the co-ordinate of the point of cylinder side surface corresponding to the first point of 
the recording path of the temperature. As the most measurements taken in the upper 
part of cylinder are less sensitive, the sensitivity coefficient for the last upper 
measurement point is smaller than SC of the lower point. 

• The smaller sensitivity for given parameters, the less accurate is its estimation (see 
Fig. 10). 

• As might be expected basing on the analysis of the heat transfer equation (1), the 
sensitivity coefficients concerning the specific heat and mass density of the tested 
material are identical. 
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Dimensionless SC for  h T
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Figure 5. Dimensionless sensitivity coefficients for the boundary conditions 
lank line 12pt 
Blank line 12pt 
8. FACTORS DECIDING ABOUT THE ACCURACY OF THE SOLUTION OF IHTP 
Blank line 12pt 
In the first chapter of this paper it has been mentioned that inverse problems are, on the 

whole, problems, which have been ill-posed due to the errors occurring in the measurements of 
temperature. A decisive role in the process of solving such problems is played by the sensitivity 
matrix, from which the final matrix of the set of equations is generated (15), i.e. 

Blank line 6pt 

 ,T=A Z Z  (25) 
Blank line 6pt 

Small values of the SC lead to a low determinant of the system 
Blank line 6pt 

 [ ]det det 0T⎡ ⎤= ≈⎣ ⎦A Z Z  (26) 
Blank line 6pt 

and this means that the system is wrongly conditioned. This determinant can also be small 
(approaching or equal to zero), if the SC of two design parameters are linearly dependent. Hence the 
conclusion that before a concrete inverse problem is solved, the sensitivity of the experiment must 
be carefully analyzed and the influence of various factors on the value of the determinant [ ]det A  of 
the matrix of the given system ought to be investigated. 

The factors which decide about the value of the determinant of the matrix A are among others, 
1. the total time of heating tk (when the number of measurements being constant), 
2. the number of measurements in the total time of heating kt , 
3. the choice and number of measurement points, 
4. the way of determining and the values of the SC, 
5. the values of some parameters (with high sensitivity coefficients) which strongly 

affecting the temperature values at the measurements points, 
6. the position of measurement points. 

Figures 6 & 7 illustrate the influence of the factors 1 - 3 in the case of the exemplary problem dealt 
with in the sixth chapter. 

Blank line 12pt 
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Figure 6. The determinant value changing with increasing time of heating and the different 
number of measurement point 
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Figure 7. The determinant relative value changing at a constant time of heating and changing 
number of measurement points 

 

The diagram on the left-hand side of Fig. 6 shows how the value of the determinant changes 
in the case of the problem with a constant number of time steps (cases 50, 100, 150 and 200 steps) if 
the dimensionless total time of heating kτ  rises. The relative increase of the value of the 
determinant is the same, independently of the number of measurement points – diagram on the 
right-hand side of Fig. 6. As we can see, in the case of the dimensionless time of heating, amounting 
to about 0.2, we may assume that the increase of determinant [ ]det A  is no longer of importance – 

st.

st.

st.

st.
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which confirm earlier conclusions derived from the sensitivity analysis. Analogically, Fig. 7 
illustrates the changes of the value of the [ ]det A  when the number of measurement points differs, 
the time of heating being constant (in the legend to this diagram the multiplicity of the kτ  for a 
basic solution RB has been given). The increase of the determinant value does not depend on the 
total time kτ  - diagram on the right-hand side of Fig. 7. 

Blank line 12pt 
9. EXEMPLARY SOLUTION OF AN INVERSE PROBLEM 

Blank line 12pt 
Here we are going to present a way of solving an exemplary inverse problem, the area, 

equations and boundary conditions (BC) of which have been dealt with in sixth chapter. 
Let’s assume that the results of temperature measurements with an IR camera on the side 

surfaces of the cylinders as in Fig. 1. are used to determine the thermal conductivity and specific 
heat of the cylinder at the bottom. 

Besides that, we will assume that in an actual sample both quantities ( )1 1k k T=  and 
( )1 1c c T=  are functions of temperature (power functions of the third order), and the heat transfer 

coefficient on the entire side surface of the sample ( ) ( )( )2 where  0,h h z z H= ∈  changes like a 
square function. 

Stages of the problem solution 
Stage I: Simulated measurement of temperatures 
In order to simulate the measurement of temperature the direct problem (1) - (4) is solved 

with all the parameters taken from the set S. The co-ordinates of the measurement points result from 
the assumed number of subintervals, into which the side surface of the sample has been divided 
(Fig. 1). The random errors with a given maximum value (e.g. +/-1°) are added to calculated 
temperatures. 

Stage II: The choice of design parameters 
The aim of the simulated experiment is to determine the two functions mentioned 

above - ( )1 1k k T=  and ( )1 1c c T= , and also other design parameters concerning the temperature 
distribution which are unknown or which can be assessed with a large error. We know, for instance, 
the amount of electric energy consumed by the heater, but not its efficiency. Another problem is the 
determination of the heat flux given up to the environment by the lateral and upper surface of the 
sample. Wanting to describe the conditions of heat exchange with environment we may assume the 
second and third kind boundary conditions, although the parameters, which express these 
conditions, are rather difficult to be assessed, even the case of extensive engineering experience, 
particularly when the surface is small as in the case of the samples presented in Fig. 1. In the case of 
the II kind of BC we may have to do with a large number of design parameters, because the 
boundary of the area should be divided into numerous sub-areas and for each of then the heat flux 
must be determined.  

In this problem, three functions: ( )Tkk 11 = , ( )Tcc 11 = , ( )zhh =   must be determined. We 
assume that we search their linear or partly linear (broken line) approximations. Simulating the 
measurements they are assumed to be power functions. Therefore the vector of design 
parameters (DP) consists of the following nine elements 

Blank line 6pt 

 { }L H L H s B M T t, , , , , , , ,k k c c q h h h h=Y . (27) 
Blank line 6pt 

As known values resulting from measurements the following quantities were used: 
1 2 2 2 pocz, kon 1 2, , , , , , ,k c z z R H Hρ ρ . 
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Stage III: Assumption of the initial values of the design parameters 
Knowing the values of DP, assumed in the simulation of measurements (Stage I), various 

initial values of DPs are applied. In the most cases they differed from accurate values by 50-150 %. 
From numerous varying problems it results that it is of more advantage to assume lower starting 
values of the DPs than the expected solution, because in the case of thermal quantities the solution 
obtained in the first iteration is negative, so that the majority of solving programs must be 
suspended. The initial values of DPs are recorded in the vector *Y . 

Stage IV: Iterative solution of the problem 
The temperatures at the measurement points, i.e. the vector T*, are found by solving the direct 

problem with assumed parameters Y*. Next the matrix Z of the sensitivity coefficients and equation 
set matrix A (14) and free terms vector b are generated. Results of the solution of this set are in a 
new vector Y. 

Stage V: Checking the conditions of convergence of the solution 
If the new vector Y do not satisfy the condition 
Blank line 6pt 

 * ε− <Y Y   (28) 
Blank line 6pt 

we may assume that * =Y Y and repeat the calculations starting with stage II. 
Calculations are carried out making use of the ANSYS – a finite element method package, 

and the authors’ own procedures utilizing ANSYS Parametric Design Language (APDL). Fig. 8. 
provides the values of several DPs in successive iterations, related to exact data (though from 
nonlinear simulation). The next two diagrams in Fig. 9 & 10 present the results of solutions 
concerning the material functions ( )1 1k k T=  and ( )1 1c c T=  for various total dimensionless times 
of heating (cases: 0.275, 0.23, 0.18, 0.14, 0.9kτ = ) and curves assumed in the simulation of 
measurements. Due to the thermal conductivity, the best solution is that one when 0.23kτ = , but for 
the specific heat when 0.275kτ = , It confirms earlier conclusions resulting from the analysis of 
sensitivity. In the case of the shorter time, the obtained solutions are encumbered with considerable 
errors, particularly if 0.14  or  0.9kτ = . In comparison with other thermophysical parameters the 
value of the Hc  is estimated with a greater error - what also confirms the conclusions that have been 
put earlier. 
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Figure 8. Design parameters in successive iterations 

 
For the heat transfer coefficients, more accurately is evaluating process of the B M,h h  that 

describe the boundary conditions near the bottom base of the sample. The remaining quantities, 
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which have relatively small SCs (like t T,h h ), are estimated with considerable errors and influence – 
to a large extent – the obtained values of the other DPs. An assessment of these two DPs – based on 
the knowledge of the physical aspect of the experiment – seems to be a better approach. 
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Figure 9. Thermal conductivity at various 
times of heating 

Figure 10. Specific heat determined at 
various times of heating 
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10. FINAL REMARKS 
Blank line 12pt 
The remaining problems have been dealt with only in short way; those interested in more 

details are advised to refer to relevant literature. 
• Determination of the sensitivity coefficients. Dealing with the problem discussed above, 

a differential approximation of the derivative is applied to determine these coefficients 
(cf. equation (24)). The increment YΔ  of the design parameters amounts from 0.001 to 
0.0001 of its value in the given iteration ( ( )0.0001 0.001Y YΔ = ÷ ). The values of the 
increment result from analysis of direct problems solutions obtained at various assumed 
increments. Generalizing, we may say that the values of the sensitivity coefficients do not 
change much if ( )0.0001 0.001Y YΔ = ÷ . Smaller values of YΔ  lead to considerable errors 
resulting from computer operations. Literature (e.g. [9], [11]) suggests for boundary 
conditions of the second kind to determine the sensitivity coefficients by solving the 
respective initial-boundary problem resulting from the differentiation of the equation 
concerning this problem (heat conductivity equation) versus the given DP. Thus, the same 
(from the mathematical point of view) equation (1) must be solved iteratively with 
simplified boundary conditions: ( ) 1 lub  0Yk Z n− ∂ ∂ = . 

• Other method of searching for the minimum objective function. Measurement errors may 
cause oscillations or instability of the solution. One of the ways of avoiding these 
difficulties is the method of regularization, which has been largely discussed in [1], [9] 
and [13]. In this method to the classical objective function (7) a smoothing additional 
matrix is added multiplied by the so-called coefficient of regularization. Various methods 
of determining the value of this coefficient have been suggested in the mentioned 
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publications. A very effective method of stabilizing the solution is a method based on the 
iterative Levenberg-Marquardt procedure (see [11]). This and other methods have been 
presented comprehensibly in [1], [5], [10] and [11]. 

• Stability of the solution. This problem has been dealt with, for instance, in [1] & [4]. The 
authors checked the stability of the method in numerical practice, solving problems with 
various levels of measurement errors and various initial values of the design parameters, 
comparing them with the solution applied in the simulation of measurements. 
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