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Abstract 
 
The aim of the paper is a modification of Pulse transient method for a specimen in 
sandwich-like setup, where outer parts of the specimen setup are replaced by sample 
reference and thus, measured sample does not need to be cut into three parts as in original 
method. The Pulse transient method, known as classical transient method, is used for 
measurement of three thermophysical parameters, namely, thermal diffusivity, thermal 
conductivity and specific heat. Complete analytical solutions of temperature distribution 
in individual parts of specimen setup are presented for a heat produced in form of the 
Dirac or the Step-wise function. Sensitivity coefficients of thermophysical parameters 
and their linear dependency were inspected. In order to verify functionality of the 
proposed model, an experiment on ceramic SiC was carried out. The experimental data 
were compared with Flash and DSC data, where satisfying results were found. 
 
Keywords: pulse transient, sandwich-like, thermal conductivity, thermal diffusivity, 
specific heat 
 
1 Introduction 
 
In the last several years the transient methods [1] started to be widely used in 
measurements of thermophysical parameters of materials. When compared to classical 
methods (Guarded hot plate, DSC), their main advantages are quite short time of 
measurement, simple build up of experimental apparatus and capability of three 
thermophysical parameters measurement in one experiment.  

The use of the Pulse transient method [2] is conditioned by need to have a sample that 
is cut into three parts. In some cases like complicated preparation of sample, insufficient 
resources for production, expensive technological process or uniqueness of a sample, we 
have no chance to gain the sample in quantity of three pieces. To overcome these 
obstacles, a model with outer parts of specimen setup replaced by sample reference is 
proposed as an extension to the Pulse transient method. 

In this paper I present the complete one-dimensional analytical solution of 
temperature distribution in each part of the specimen setup due to a heat produced in the 
form of the Dirac or the Step-wise function. Solution of similar problem with heat 
produced in form of the Dirac pulse was presented by Kulakov [3]. Surprisingly, his 
equations of a temperature distribution are completely different from those, presented 
here. The sensitivity coefficients of the thermophysical parameters and their linear 
dependency are shown and inspected. Moreover, the sensitivity coefficients in 
dependence on the thermophysical properties of outer parts and middle part are depicted 
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and discussed. Experiments were carried out on sample made of ceramic SiC (middle 
part) with sample references (outer parts) made of PTFE at room temperate and air 
atmosphere. 
 
2 Model 
 
The extended version of the Pulse transient method is depicted in Fig. 1, where the 
specimen setup consists of two outer parts (I, III) having known thermophysical 
properties (sample reference) and one middle part (II) of unknown properties. The heat 
pulse is produced due to Joule heating from electrical resistance of a planar source 
situated between the first and the second part. A thermocouple is placed between the 
second and the third part. The method can be described as follows. Temperature of the 
specimen is stabilized and uniform. Then a small disturbance in form of a heat pulse is 
applied to the specimen. The thermophysical parameters of unknown sample are 
calculated upon temperature response according to the model used. 

I
to

Current pulse T

time

Temperature response

Heat source Thermocouple
Thickness

h

Sample

II IIII

Reference sample  
Fig 1 Pulse transient method in sandwich-like specimen setup 

 
The model considering real experimental setup leads to complicated mathematical 

expressions with unknown solutions. Therefore, some simplifying assumptions have to 
be postulated.  The following assumptions (•) and criteria (○) for their fulfillment in real 
experiment are considered: 
• one-dimensional heat transfer, isotherms of temperature field have form of plan 

parallel plains perpendicular to the direction of heat propagation, 
o influence of a heat loss from the specimen surface should be negligible, 
• the outer parts (I, III) of specimen setup have infinite thickness, 
o thermal thickness of the outer parts (I, III) should be enough thick corresponding to 

time length of the temperature response, 
• an infinitesimal thickness of the heat source with the same thermophysical properties 

as the specimen, 
o a heat capacity of the heat source should be negligible in comparison with heat 

capacity of the specimen volume involved, 
• an ideal thermal contact between the heat source, the thermometer and the specimen, 
o the thermal contact resistance should be negligible in comparison to thermal 

resistance of the specimen parts, 
• negligible mass of the thermometer, 
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o a time constant of the thermocouple should be sufficiently small in comparison to 
time rate of the temperature response. 

 
An ideal model based on the previous assumptions is schematically depicted in Fig. 2, 

where a1, c1, ρ1 and a2, c2, ρ2 represent physical properties (thermal diffusivity, specific 
heat and density) of the outer parts (I, III) and the measured unknown part (II) of the 
specimen setup, h is the sample thickness (part II) and Q1, Q2 are individual parts of heat 
Q dissipating into the specimen by the heat source.  

+x-x 0 h

I II III

a1,c1,ρ1 a2,c2,ρ2 a1,c1,ρ1

Q1 Q2

 
Fig 2 Schematic diagram of model of the Pulse transient method in sandwich-like 

specimen setup  
 
The general one-dimensional heat conduction in the individual parts i has the 

following form 
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where Ti stands for the temperature and a is the thermal diffusivity a1 for i = 1, 3 or a2 for 
i = 2. 
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where Q is a heat supplied by the heat source, t0 is duration of heat pulse and λ is the 
thermal conductivity defined by well-known relation 
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ρλ ac= .  (9) 

Using Laplace transform the temperature functions Tdi(x, t) for i = 1, 2, 3, conforming 
the equation of heat conduction (1) and fulfilling conditions (eq. 2 – 8) are found for the 
heat generated in form of the Dirac pulse ( 00 →t ) 
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 for x ∈ (-∞, 0〉, (10) 
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  for x ∈ 〈h, ∞), 

where the constants k1 and k2 are defined by 

2221111 acack ρρ −= ,  (13) 

2221112 acack ρρ += .  (14) 

Integration of the temperature functions Tdi(x, t) eq. (10 – 12), valid for the Dirac 
pulse, over time domain [4] leads to the solution of temperature functions Tsi(x, t) for i = 
1, 2, 3, for a heat generated in form of the Step-wise function, where instead heat Q the  
constant heat flux q is used. 
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  for x ∈ 〈h, ∞). 

The function iΦc(x) is defined by 
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where Φc(x) is a complementary error function [4]. 
Finally, the solution Tpi(x, t) involving the heat pulse width t0 one can obtain by 

subtraction of the functions Tsi(x, t) eq. (15 – 17) for time t and t-t0 resulting in 

),(),(),( 0ttxTtxTtxT sisipi −−=  i = 1, 2, 3. (19)  

All infinite series stated above converge very well just for several elements. 
 
3 Analysis of temperature function 
 
An ideal temperature response (shown in Fig. 3) is calculated from the function Tp2 (x = 
h, t) for thermometer position between the second and the third part of the specimen 
setup. In order to inspect a time interval in which the temperate function is sufficiently 
sensitive to change of the thermophysical parameters a, c, the sensitivity coefficients βa, 
βc and its linear dependency γ are employed. The reduced sensitivity coefficient βp is 
given by [5]  

p
tTptp ∂

∂
=

)()(β ,  (20) 

where p is a parameter for which the temperature response T(t) is analyzed. The linear 
dependency of the sensitivity coefficients βa, βc is then simply defined as 

cat ββγ /)( = .  (21) 

The reduced sensitivity coefficients and its linear dependency are plotted in Fig. 3 as a 
function of time. A time interval suitable for evaluation of the thermophysical parameters 
a, c is determined by position of both maxima of absolute values of the sensitivity 
coefficients tm

βa, tm
βc and by increasing their linear dependency γ, which is characterized 

by its co-linearity with time axis. It’s evident that the time interval appropriate for the 
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thermophysical parameters evaluation should be at least up to the maximum value of βc. 
For the case depicted in Fig. 3 the time interval is then from 0 to 6 s. 
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Fig 3 Temperature response T(t), sensitivity coefficients of thermal diffusivity and 

specific heat βa(t), βc(t) and their linear dependency γ(t) as functions of time t 
 

Another way to analyze the temperature functions is from the point of view of its 
sensitivity on the thermophysical properties of the outer parts of specimen setup. In the 
next, two marginal cases of specimen setup are analyzed: insulator – conductor – 
insulator and conductor – insulator – conductor. The temperature distributions in each 
part of the specimen setup are shown in Fig. 4 and 5 for two different times of evolution.  
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Fig 4 Temperature distributions in specimen setup insulator – conductor – insulator 
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In the case of specimen setup insulator – conductor – insulator shown in Fig. 4 a heat 
penetrates particularly into the middle part (conductor). After some time the temperate 
field inside the conductor is uniform and this second part starts to serve as a heater for 
neighboring outer parts. From this point, the temperature response is useless to 
characterize the middle part of specimen and further temperature recording is not needed. 
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Fig 5 Temperature distribution in specimen setup conductor – insulator – conductor 

 
In the case of specimen setup conductor – insulator – conductor shown in Fig. 5 a heat 

penetrates particularly into the first part (also conductor). The measured middle part of 
the specimen setup affects then as a heat barrier between both conductors. For longer 
times of a temperature response the spreading temperate field inside the first part of the 
specimen setup can reach its boundary at x = -10 mm. One has to choose enough 
thermally thick first part as well as enough thermally thin second part to avoid this break 
of the model assumptions including infinitive thickness of the outer parts as seen on the 
left side in Fig. 5 for t = 15 s. 

The normalized sensitivity coefficients were used in order to analyze the sensitivity of 
temperature function on the thermophysical parameters change in dependence on the 
properties of the outer parts of the specimen setup. 3D graphs in Fig. 6 and 7 represent an 
influence of thermal properties of the outer parts on these normalized sensitivity 
coefficients of thermal diffusivity βna and specific heat βnc, where a heat capacity is a 
product of the specific heat times the density. The normalized sensitivity coefficient is 
defined as a product of the maximal value of sensitivity coefficient (eq. (20)) divided by 
a value of the temperature response in time of that maximum tm

βp (look in Fig. 3). The 
resulting relation has a form 

p
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where p is a parameter for which the temperature response T(t) is analyzed. This 
sensitivity coefficient is truly dimensionless and thus it does not depend on size of  
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Fig 6 Dependence of normalized sensitivity coefficient of specific heat βnc on the 

thermophysical properties of the outer parts of the specimen setup 
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Fig 7 Dependence of normalized sensitivity coefficient of thermal diffusivity βna on the 

thermophysical properties of the outer parts of the specimen setup 
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temperature response or analyzed parameter. In this meaning the normalized sensitivity 
coefficient is a relative change of analyzed function on a relative change of its parameter. 

The 3D graph in Fig. 6 shows the sensitivity coefficient of the specific heat may reach 
zero values, what means that the specific heat of the measured sample can not be 
determined from the temperature response for whole range of the thermophysical 
properties of the outer parts of the specimen setup. These zero sensitivities connected 
with certain combinations of thermal diffusivity and heat capacity of the outer parts are 
depicted in Fig. 8 (solid black line) as a two-dimensional representation of 3D graph 
from Fig. 6 for βnc = 0. To avoid zero sensitivity of the specific heat, the thermophysical 
properties of the outer parts have to be chosen as much as possible away from the black 
solid line. Here, a red cross denotes the thermophysical parameters of outer parts are the 
same to those of the sample (middle part). Since it lies on the zero sensitivity line (solid 
black) it is clear, that the outer parts of specimen setup made of the same material as the 
measured sample are unsuitable for the specific heat measurement. A dashed red line in 
Fig. 8 represents such combinations of thermal diffusivity and specific heat of the outer 
parts, in which their thermal conductivity (product of eq. 9) is the same to the thermal 
conductivity of measure sample. The line of equal thermal conductivities of the outer 
parts and the measured middle part nearly fits the line of zero sensitivity of specific heat. 
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Fig 8 Dependency of thermal diffusivity on specific heat of the outer parts of the 
specimen setup for zero specific heat sensitivity βnc = 0 (black solid line) and for equal 

thermal conductivity with middle part (red dashed line) 
 

This attribute of the presented method can be elucidated as follows. A decrease of heat 
capacity of the middle part decreases a heat flow through it and thus increases a 
temperature. A decrease of the heat flow in the third (outer) part decreases then the 
temperature (gradient). The opposite processes should be balanced for certain values of 
the thermophysical parameters (Fig. 6 and 8) in the interface of both parts (position of 
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thermometer) and thus no changes in temperature response are noticeable. A fitting 
algorithm can not converge in such situation. 

All theoretical analyses presented in this section were calculated for sample made of 
stainless steel (middle part) with thickness h = 5 mm, pulse width t0 = 0.2 s and heat flux 
q = 125 kJ/m2 and for sample reference made of PTFE (outer parts) if not mentioned 
else. As expected, the calculation for another thickness h = 7 mm fitted the results shown 
in Fig. 6 – 8 very accurately. 
 
4 Experiment 
 
4.1 Experimental set-up and conditions 
 
The experiment was carried out on ceramic silicon carbide SiC with density 3242 kg/m3. 
The sample was prepared in form of a cylinder with diameter of 15 mm and thickness h = 
2.84mm. 

The outer parts of the specimen setup were made of PTFE (known as Teflon) with 
density 2158 kg/m3, diameter 15 mm and thickness 15 mm. Their thermophysical 
properties, the thermal diffusivity 1.095x10-7 m2s-1 and the specific heat 1209 J/kgK, 
were measured by Pulse transient method. 

The instrument RT 1.02 (Institute of Physics SAS) is used for measuring the 
thermophysical properties. Basic scheme of the instrument is shown in Fig. 9. 
Thermostat in connection with the plate heat exchangers establishes the specimen 
temperature. An isothermal measuring regime with an isotherm within the limit of 0.02 K 
was used. A programmable current source KEPCO was used for generation of a heat 
pulse using the plane electrical resistance of 2 Ω . The planar heat source was made of a 
cooper foil of 20 µm etched in a form of a meander. A chromel-alumel thermocouple 
with thickness 40 µm was used as a thermometer. The temperature response was scanned 
by Keithly multimeter. A PC computer synchronizes all units. The typical parameters of 
the temperature response were Tm ∼ 1 K and tm ∼ 1 s. The measurements were performed 
at room temperature and air atmosphere. 

 

Personal

Computer Keithley

Voltmeter

Thermometer

 Specimen

  I   III  II

Inflow

Outflow

Heat source

Thermostat

Temperature
     control

Current
source

 
Fig 9 Basic scheme of experimental apparatus 
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4 Results 
 
The thermophysical parameters of ceramic SiC measured by pulse transient method in 
sandwich-like specimen setup are stated in Table 1., where the values measured by 
standard methods (Flash method for thermal diffusivity and DSC for specific heat) are in 
the last column. A comparison between the values of Pulse transient method in 
sandwich-like specimen setup and standard methods shows an excellent agreement for all 
parameters. The reference value of thermal conductivity was simply calculated from 
Flash and DSC values using eq. 9. 

 
Table 1. The thermophysical parameters of ceramic SiC and comparison 

 

Parameter Pulse transient in sandwich-
like setup Comparison 

Thermal diffusivity 
x10-6 [m2s-1] 21.2 21.8 Flash 

Specific heat 
[Jkg-1K-1] 672 670 DSC [6] 

Thermal conductivity 
[Wm-1K-1] 46.2 47.4 

 
 
5 Conclusions 
 
The complete one-dimensional analytical solutions of a temperature distribution in each 
part of the sandwich-like specimen setup were carried out according to a heat produced 
in form of the Dirac or the Step-wise function. An analysis of the solution found was 
performed considering the time evolution and the thermophysical properties of the outer 
parts of the specimen setup (Fig. 3 – 8). A limitation of these temperature functions in 
view of their use in thermal diffusivity and specific heat determination was found and 
discussed. It could be summarized in general as: the bigger difference between the 
thermal conductivities of the middle and the outer pars of the specimen setup, the 
accurate specification of the specific heat. 

The measurement and comparison of the thermophysical parameters of ceramic SiC 
were performed in order to roughly verify the presented model of the sandwich-like 
specimen setup.  A satisfying result was found for all measured thermophysical 
parameters (Table 1). 

Nevertheless, additional experimental investigation and mathematical analysis of 
thermal contact’s influences between each parts of specimen setup should be carried out. 
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