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Abstract 
 
This work reports on thermophysical parameters (thermal conductivity and diffusivity) 
measurement. The influence of temperature measurement uncertainty on the parameter 
estimation uncertainty is studied using least squares procedure. The standard and difference 
analysis are used for optimizing the experiment with respect to data window.  The analysis is 
applied to the Extended dynamic plane source method and the results of numerical 
computation are illustrated in the form of a contour plot. 
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1 Introduction 
 
Dynamic methods [1] of measuring thermophysical parameters of solids represent a large 
group of techniques which use a dynamic temperature field inside the specimen. The dynamic 
methods can be characterized as follows. The temperature of the specimen is stabilized and 
uniform. Then the dynamic heat flow in the form of a pulse or step-wise function is applied to 
the specimen. The thermophysical parameters of the material can be calculated from the 
temperature response.  

The measuring procedure consists of theory and experiment. The theoretical model of the 
experiment is described by the partial differential equation for the heat transport. The 
temperature function is a solution of this equation with boundary and initial conditions 
corresponding to the experimental arrangement. The experiment consists in measuring the 
temperature response and fitting the temperature function over the experimental points. Using 
the least squares procedure following thermophysical parameters can be estimated:  thermal 
diffusivity a, thermal conductivity λ and specific heat capacity c. 

The reliability of the measurement can be quantified by estimating its uncertainty [2]. The 
sources of uncertainty in dynamic methods can be divided into two groups. The first group 
represent the uncertainties caused by the deviations between the mathematical model and real 
experimental set up. The second group is created by uncertainties of input parameter 
measurements and evaluation method. 

The aim of this work is to analyze the influence of the temperature measurement 
uncertainty on the thermophysical parameter estimation uncertainty. All other input 
parameters will be regarded as constants with zero uncertainty. Presented analysis will be 
applied to the Extended dynamic plane source (EDPS) method [3]. 
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2 Uncertainty assessment in the least squares procedure 
 
As mentioned above the first step of evaluation is to determine the temperature function - 
temperature increase as a function of time. Assume the function is of known analytic form  
        
T t T t( , ) ( , , ,... )

r
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where t is the variable and 

r
α is the vector of unknown parameters [4]. In addition to one or 

two thermophysical parameters, there are usually some nuisance parameters [5] connected 
with the model.  We suppose that the deviation between model and experiment is negligible 
and the only source of uncertainty, in this analysis, stems from temperature measuring 
accuracy. We also assume that the uncertainties of temperature measurement of all points are 
the same and uncertainties of time measurement are negligible. As the temperature function 
(1) is nonlinear in parameters we have to expand it using Taylor series [6]. Then we can write 
the linear least squares procedure in matrix notation 
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where 

r
Y  is the observation vector of temperature measured at n points determined by 

r
t  

vector of times. 
r
ε  is the vector of errors, ra  is the close guess for parameter vector 

r
α and X is 

the sensitivity matrix [4] given by 
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where β j  is the sensitivity coefficient for parameter αj. Then the standard uncertainty of the 
least square estimate of the parameter αj becomes 
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where ( )Tu  is the standard uncertainty of temperature measurement. According to the 
equation (4) the parameter estimation uncertainty consists of two parts. The first part, 
designated as the coefficient Aj, is given by temperature function and selection of measured 
points. The second is given by temperature measurement uncertainty.  
 
3 Standard and difference analysis 
 
In this section we will focus on optimizing the experiment with respect to data window 
defined by the time interval ( )SBB ttt +, , where tB is the beginning and tS the size of the 
interval, as shown in Fig. 1. The standard and difference analysis [7] are methods of 
determining the time window in which the fitting procedure should be applied to obtain 
reliable values of thermophysical parameters. The standard analysis is based on estimating 
parameters using least squares procedure when tB is kept constant while tS is successively 
increased. The results of fitting are plotted against tS. In difference analysis tB is the variable 
and tS is the constant and the results of fitting are plotted against tB. If the time interval 
( )SBB ttt +,  is not suitable for parameter estimation, the results of fitting are erroneous and the 
plot is scattered. 
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Fig 1 Temperature function and data window definition 
 
Both methods can be applied to data from real measurements where all types of uncertainties 
are included. They can also be used in experiment modeling where the only source of 
uncertainty is simulated as random noise of temperature measurement. The third application 
consists in plotting the time dependence of coefficient Aj. As seen from the equation (4),  low 
value of Aj predicts also low value of parameter estimate uncertainty ( )ju α  and thus low 
scattering of parameter αj least square estimates.  
 
4 Dimensionless quantities 
 
Dimensionless quantities [8] enable to perform universal numerical calculations with arbitrary 
specimen dimensions and thermophysical properties. Dimensionless time is defined by  
 

t a t
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where a is the thermal diffusivity and l is the characteristic dimension of the specimen. 
Dimensionless temperature is defined by the following form  
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where Tm  is the maximum value of temperature function in the measuring time interval. 
Similarly, we can define dimensionless sensitivity coefficients 
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and also dimensionless coefficient +

jA  using the equation (4) as  
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where u+  is the dimensionless (relative standard) uncertainty [2]. 
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5 Extended dynamic plane source method 
 
This method is characterized by step-wise heating and one-dimensional heat flow into a finite 
specimen [3]. The experimental arrangement is obvious from Fig. 2. The nickel disc 
simultaneously serves as the heat source and thermometer. The heat is produced by the 
passage of an electrical current through the disc.  
 

 heat sink 

specimens 

nickel disc

l

 
 

Fig 2 The setup of the experiment. 
 
Two identical specimens of cylindrical shape cause symmetrical division of the heat flow into 
a very good heat conducting material (heat sink), which provides isothermal boundary 
condition of the experiment. The instantaneous value of the disc temperature is determined by 
measuring its resistance. The theoretical temperature function is given by the following form 
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where q is the heat current density, l is the thickness, λ is the thermal conductivity and a is the 
thermal diffusivity of the specimen. Nuisance parameter τ is the base line referred to the 
additional increase in the temperature of the disc due to its imperfections, ierfc is the error 
function integral [9] and β describes the heat sink imperfection. The maximum value of the 
temperature function is given by 
 

T q l
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⋅
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           (10) 

 
6 Results and discussion 
 
Fig. 3 shows the temperature function and sensitivity coefficients as a function of time in 
dimensionless scale. The sensitivity coefficient is a measure of the change in temperature 
function due to the variation of the estimated parameter. The sensitivity coefficients analysis 
is based on the assumption that the fitting procedure does not work properly when sensitivity 
coefficients are small or linearly dependent on each other [4]. But it is very uneasy to 
determine the optimal time interval, in which the fitting procedure should be applied, directly 
form Fig. 3. Some methods for quantification of linear dependence were elaborated. In [10] 
the linear dependence was quantified using local curvature of the line when one sensitivity 
coefficient is plotted against the other. In [11] the linear dependence was investigated by the 
use of the Wronskian. In both methods the time interval was determined where the sensitivity 
coefficients were not linearly dependent. But there is no evidence of a minimum of the 
computed parameters uncertainty in this interval.  
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Fig 3 Dimensionless temperature function and dimensionless sensitivity coefficients βa
+  and 

βλ
+  vs. dimensionless time in EDPS method. 
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Fig 4 Contour plot of dimensionless coefficient Aa
+  as a function of dimensionless times tS

+  
and tB

+ . 
 

 



 27

2

4

10

20

40

100

200

400100010000

0.5

1

0

t
B
+

t
S
+1 20 p

A

B
C

1

 
 

Fig 5 Contour plot of dimensionless coefficient Aλ
+  as a function of dimensionless times tS

+  
and tB

+ . 
 

The problem will be solved by means of computing the parameter estimate uncertainty for all 
possible time intervals using formula (8). This represents an integration of the standard and 
difference analysis described in section 3. Because the temperature measurement uncertainty 
( )Tu  is assumed to be constant, it proves to be useful to investigate only the coefficients Aa

+  
and Aλ

+  associated with  the thermophysical parameters a and λ. Fig. 4 shows the 
dimensionless coefficient Aa

+  as a function of two variables ts
+  and tB

+  in the form of a contour 
plot, which directly enables to determine the expected uncertainty of parameter estimate for 
given time interval. Alternatively, we can easily find the time interval for required 
measurement uncertainty. In Fig. 4 we see that there is no local minimum and the coefficient 
is decreasing with the size of the interval. The theoretical temperature function (9) describes 
the real experiment only in specific time interval in which the least squares procedure can be 
applied. The borders of such an interval can be plotted as straight lines in Fig. 4. For example, 
the hatched surface represents all possible intervals, points t tS B

+ +, , which are subset of an 
interval (0.5; 2). Similarly, Fig. 5 shows the contour plot of the dimensionless coefficient Aλ

+ . 
The contour lines shows the "valley" along the straight line p with points A, B and C. This is 
the region where low values of  uncertainty can be expected.  
 Fig. 6 and 7 show the dependences of dimensionless coefficient Aa

+  and Aλ
+  on 

dimensionless time tB
+   for 3 values of  tS

+  = 0, 0.3 and 1, respectively. These plots represent 
the difference analysis described in section 3. Points A, B and C are situated in minimums of 
curves in Fig. 7 and were selected to uncertainty evaluation in Tab. 1. 

The application of presented analysis was  demonstrated simulating the  measurement 
of   PMMA (polymethylmetacrylate).  The following values were used: l = 0.003 m, q = 500 
W⋅m-2,  a = 0.12⋅10-6 m2⋅s-1, λ = 0.19 W⋅m-1⋅K-1, τ = 0.2 K and β = -0.954. The sample 
period was 1 s and the temperature measurement uncertainty ( )Tu  = 0.01 K. Tab. 1 shows the 
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uncertainty evaluation for three time intervals. Using equation (5) the dimensionless times 
were transformed into real time windows. The dimensionless coefficients were determined by 
the use of Fig. 6 and 7. The relative standard uncertainties of thermophysical parameters a 
and λ estimates were obtained by using equations (8) and (10). 
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Fig 6 Values of dimensionless coefficient Aa
+   vs. dimensionless time tB

+  (difference analysis). 
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Fig 7 Values of dimensionless coefficient Aλ
+  vs. dimensionless time tB

+  (difference analysis). 
 
The sharp minimum in Fig. 7 point C predicts that the optimal time interval would have non 
zero beginning. This is in agreement with the results in works [10-12] where the window, in 
which the fitting procedure should be applied, was determined approximately to tB

+  = 0.1 and 
tS
+  = 1. But current analysis proved that the curve tS

+  = 1 in Fig. 6 and 7 acquired the 
minimum at tB

+  = 0 (point A). Hence, from theoretical point of view, there is no reason for 
omitting data at the beginning of the time series. However, in real experiment the 
imperfection of the disc can cause the beginning of the measured temperature function to be 
destroyed as discussed in [10]. 
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Tab 1 Uncertainty evaluation for tree time intervals defined by points A, B and C in Fig. 5 
 

point tB
+   tS

+  t sB  t sS  window [s] Aa
+  Aλ

+  ( )[ ]%au +  ( )[ ]%λ+u

A 0 1 0 75 (0; 75) 2.4 0.61 0.64 0.16 

B 0.27 0.3 20 23 (20; 43) 34 3.1 9.0 0.84 

C 0.4 0.03 30 2 (30; 32) 8400 94 2300 26 

 
7 Conclusions 
 
The paper presents the analysis of the influence of temperature measurement uncertainty on 
the least squares estimate uncertainty of the thermophysical parameters. The analysis is based 
on numerical computing the parameter estimate uncertainty for all possible time intervals. 
The coefficients of uncertainty Aa

+  and Aλ
+  defined by (4) and (8) are illustrated  as a function 

of two variables ts
+  and tB

+  (Fig.4, 5). The analysis was applied to the thermal conductivity and 
diffusivity measurement of PMMA by using EDPS method. The results are presented in 
Fig.6, Fig.7 and Tab.1. The analysis showed that at shorter intervals (tS

+=0.3) the minimum 
uncertainty is obtained at non zero interval beginning but at longer intervals (tS

+ =1)  the 
minimum is at tB

+  = 0 (point A).   
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