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Abstract 
 
The approach based on the solution of an inverse heat transfer problem and surface 
temperature measurements is used for determination the temperature-dependent heat 
transfer coefficient of porous building material and for the experiment design. The 
transient surface temperature distributions are monitored by the infrared camera. The 
Levenberg-Marquardt procedure of minimization of the least-squares norm is applied 
for a solution of the presented parameter estimation problem. The results of the 
application of this method to a real temperature field showed its suitability for practical 
engineering calculations.  
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1 Introduction 
 
The heat transfer coefficient given by the Newton`s law of cooling of porous materials 
exposed to normal climatic conditions can be determined by standard laboratory 
techniques. However, a current research in determining the building porous material 
thermal properties indicates the unsuitable nature of the standard measuring methods, 
Shin et al [1]. 
In order to determine the heat transfer coefficient of building porous materials as a 
function of temperature, the inverse heat transfer problem should be solved. The 
inverse methods are well known, in particular in the works [2, 3]. 
The proposed procedure combines the accurate measurements of surface temperature 
and the data processing with the inverse thermal problem by utilizing the Levenberg – 
Marquardt method [3] in order to determine the temperature dependence of heat 
transfer coefficient . The temperature interval is considered as the piece-wise 
continuous approximation, that is, the inverse thermal problem can be seen as a 
parameter estimation. Heat transfer coefficient  is represented by the vector 

 as the estimated parameter. 
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The results of ill-posed inverse problem depend on the number of accurate temperature 
measurements, that the infrared camera is enabled to acquire. This generally makes the 
approach fairly stable and accurate.             
The D-optimum approach [3] is used for the experiment design - the heating and final 
experimental time period.  
 
 
2 Direct problem 
 
The physical problem involves a concrete cylindrical geometry sample, which is 
mounted vertically and heated from the bottom base by a surface heater. The sample is 
embedded in the chamber with a constant temperature. The experimental setup ensures 
axis-symmetrical cooling conditions of 2D transient heat transport in the specimen. 
The transient temperature distribution on the surface of the sample is measured by the 
infrared camera (see Fig.1). 
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Fig.1  Setup of the experiment 1- heater, 2- insulating basement 
 
 
The governing equation for the above axis-symmetrical thermal conditions, for the 
material which thermal conductivity ( )Tλ  is temperature dependent and can be written 
as 
 

                                                    ( )[ ]
t
TcTTdiv
∂
∂

=∇   ρλ                                                (1)  
 

where: is the temperature field, ),,( tzrTT = r and are radius and height of specimen, 
respectively, 

z
ρ  and c are density and specific heat. 

Heat transfer along the surfaces of the specimen is defined by the boundary conditions, 
which are expressed as follows 
 

                                  ( ) q
z
TT =
∂
∂

− λ        Rr ≤   and  0=z                                         (2) 
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r
TT −=
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− λ           Rr =    and  Hz ≤≤0                    (3) 

                          ( ) ( )( )eh TTTh
z
TT −=
∂
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− λ            Rr ≤   and  Hz =                         (4)  
 

where: is the heating flux, q ( )( )ev TTTh −  and ( )( )eh TTTh −  represent the heat 
exchanged with the ambient air, ( )Thv , ( )Thh  are the heat transfer coefficients 
dependent on temperature, which control the cooling process along side and top 
surfaces, respectively,  is the ambient temperature. eT
The initial condition are expressed as follows     
                                       ( ) eTtzrT =,, Rr ≤           and     Hz ≤≤0                         (5) 
It is considered that the temperature range of interest in building applications is 20 – 
80º C. In the solution of the formulated direct problem, we employ a centric-difference 
scheme. 
 
 
3 Inverse problem 
 
For the inverse problem analysed here, the heat transfer coefficient is regarded as 
an unknown quantity. The aim of the inverse analysis is to identify it. The whole 
temperature range is divided into a certain number of sub-ranges within which the heat 
transfer coefficient is modeled as a piece-wise linear function. This practically means 
that the function  is modeled as the vector 

)(Th

)(Th ( )Nhhh ,...,, 21=h , where  represents 
a value of heat transfer coefficient at a selected temperature , . For the 
determination of such parameters, we consider the transient temperature measurements 

 taken at the locations along the side surface , 

nh

nT Nn ... ,1=

m
ijT jx Mj ,...,1= . The subscript i  refers 

to the time at which the measurements are taken, that is  for . The 
temperature measurements may contain random errors, but all the other quantities 
appearing in the formulation of the direct problem are supposed be known exactly. By 
assuming the normally distributed random errors, with the constant standard deviation 
and zero mean, the solution of the inverse analysis leads to the optimization of the 
ordinary least-squares norm, which can be written as 

it Ii ,...,1=
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and which reaches the minimum among all admissible vectors h ;  
where  denotes the vector of unknown parameters. The superscript T  

denotes transpose and  is given by 

( Nhhh ,...,, 21=h
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where ( )c
i

m
i TT

rr
−  is a row vector containing the differences between the measured and 

estimated temperatures at the measurement points , jx Mj ,...,1= , at time , that is: it
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The temperatures are calculated from the solution of the direct problem (at the 

positions and time where temperatures are measured) by using estimates for the 
unknown parameters . 

c
ijT

m
ijT

Nnhn ,...,2,1  , =
The minimizing procedure, in which components of the vector h  are updated, is 
realized with Levenberg–Marquardt method. The iterative procedure is given by  
 

( )[ ] ( ) ( )[ ]kcmkkkkkkk hTTJJJhh −Ω+=
−

+ T1T1 μ                                                            (7) 
 

where  is the sensitivity matrix,  is a positive scalar (damping parameter),  is 
a diagonal matrix and the superscript  denotes the iteration number.  

kJ kμ kΩ
k

The matrix term damps oscillations and instabilities due to the ill-conditioned 
character of the problem by making its components large compared to those of . 
The damping parameter is reduced as the iteration procedure advances to the solution 
and it increased if the errors inherent to the measured data are amplified generating 
instabilities on the solution. The stopping criterion is used as follows 

kkΩμ
JJ T

ε<−+ kk hh 1 , 
where ε  is the desired tolerance. 
The sensitivity matrix  is defined as J

( ) ( ) TT
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h
hThJ                                                                                                           (8) 

The elements of the sensitivity matrix are sensitivity coefficients, which are defined as 
the first derivative of the calculated temperatures with respect to the assumed and then 
identified input data . Nnhn ,...,2,1  , =
The sensitivity coefficients are required to be large in a magnitude, so that the 
estimated parameters are not very sensitive to the measurement errors. In order to have 
the matrix  invertible the determinant of  cannot be zero or very small. Such a 
requirement over the determinant of  is better understood by taking into account a 
statistical analysis. The confidence region for the estimated parameters  is 
computed from  

JJ T JJ T

JJ T

Nhhh ,...,, 21

( ) ( ) 21T ˆˆ χ≤−− − hhVhh                                                                                                  (9) 
where: is the chi-square distribution, and is the covariance matrix of the 
estimated parameters given by 

2χ V

Nhhh ,...,, 21

( ) 21T σ−
= JJV                                                                                                              (10) 

where σ  is the standard deviation. 
 
The design of an optimum experiment basically consists in examining a priori some 
kind of measure of the accuracy of the estimated quantities in order to choose 
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experimental variables (in this paper the heating time), so that minimum variance 
estimates are obtained. The optimum experiment is designed by minimizing the 
hypervolume of the confidence region. The minimization is obtained by maximizing 
the determinant of , in the D-optimum approach [3]. Since the covariance matrix 

 is given (10), we can the design the optimum experiment by maximizing the 
determinant of the matrix , also refered to as the Fisher information matrix. For a 
case involving a large but fixed number of transient measurements of M sensors, each 
element ,  of the matrix  is given by 
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where fτ  is the final experimental time. 

The effectiveness of the used iteration process is measured by the residual  
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4 Results 
 
In this work, the temperature dependent heat transfer coefficient was determined from 
the experimental set-up with transient thermal conditions, as we mentioned in section 
2. The sample has the radius , the height , the temperature dependent 
thermal conductivity is  for the temperature interval 

, the heat flux supplied by the heater is , the temperature in the 
chamber is . The surface temperature distribution was carried out by NEC 
 

m 025.0 m 08.0
( ) 11..  015.082.0 −−⋅+ KmWT

( ) C°−  6020 2. 380 −mW
C° 20

          
 
Fig. 2 Transient variation of ( )Fdet  for heating time 3=hτ (o) and for continuous 
heating (•) 
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TH7102MX infrared camera. Such images guarantee that measurement errors generally 
do not exceed . As explained in the section 3, we examine the experimental 
heating time, so that the minimum variance estimated quantities are obtained. Fig. 2 
presents the time variation of the determinant of the matrix F , the elements of which 
are given by (10). Fig. 2 was obtained for two heating times. An analysis of Fig.2 
reveals the fact that the maximum value of 

K2.0

( )Fdet  for the heating time 3=hτ  is about 
the same as the one obtained with the continuous heating. But, the maximum value of 

 for ( )Fdet 3=hτ occurs at the final experimental time of 2,4=fτ , instead of 5,9=fτ  
for continuous heating. Therefore the use 3=hτ  and 2,4=fτ  may result in estimates 
as accurate as those obtained with continuous heating, but in less then half of the 
experimental duration.  
 
 

                              
                       
Fig.3. Temperature dependence of heat transfer coefficient. 
 
 
Fig.3 demonstrates the results obtained for the heat transfer coefficient along the side 
of a specimen as the temperature dependence. It is important to stress that the final 
results of inverse analysis do not depend on the initial guesses. The initial guess affects 
the number of iterations but not the values to which the identified quantities converge. 
Fig.4 presents the convergence of iteration process for the identification of three 
components of heat transfer coefficient. 
 
 
Conclusions 
 
In this paper the procedure of determining of the heat transfer coefficient of concrete 
materials, based on the transient temperature measurements using an infrared camera is 
proposed. The collected temperature measurements are processed through the inverse 
thermal modeling software which utilizes an appropriate model of heat transfer 
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Fig.4. Convergence of the iteration process for:   , o , •  )32( Ch ° )43( Ch ° )52( Ch °

 

phenomena and identifies the heat transfer coefficient as the temperature function. The 
extensive calculations showed that the iterative process converges to the values quite 
close to accurate ones. An analysis of the determinant of the information matrix shows 
that more accurate estimates can be obtained by using a heating time smaller than the 
final experimental time. The resolution of infra-red camera measured temperatures 
with the accuracy of  guarantees a good accuracy of identification. K2.0
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