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Abstract 
 
The paper examines thermal properties of materials. The transient pulse method was used for 
specific heat, thermal diffusivity and thermal conductivity determination. The evaluation was 
performed with the help of mathematical apparatus used for study of fractal structures 
properties. The results that were obtained are the same as the results obtained by classical 
methods. 
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1 Introduction 
 
The article deals with the use of new data evaluation method, which was described in [1]. The 
method results from generalized relations that were designed for study of physical properties 
of fractal structures [2], [3]. As it is shown these relations are in a good agreement with the 
equations used for the description of time responses of temperature for the pulse input of 
supplied heat [4], [5], [6]. Thermal parameters (specific heat, thermal diffusivity and thermal 
conductivity) calculated are corresponding for both methods. 
 
2 Theory 
 
The dependence of fractal structures’ (characterized by the fractal dimension D in E-
dimension space) temperature on the distance from heat source hT and on the time t was 
determined in [1] using the theory of the space-time fractal field [2], [3]
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In this term Q is the heat supply from the heat source, cp is the specific heat capacity at 
constant pressure (J.kg−1.K–1), ρ is the mass density (kg.m−3)  is the minimum value of the 
thermal diffusivity

0a
)2/(2 0 +−= EDaa  (m2.s–1) for fractal dimension equal to the topological 

dimension of the space ( ED = ). 
If the heat diffuses by the significantly smaller speed ( , small distances or long 
times) the terms in parenthesis can be considered as significant in the expansion of expo-
nential function ( ) and thus we can write 
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where Q is the total heat transferred to the body from the heat source with the thermal 
conductivity ac ρλ p= . The relation (2) is applicable for fractal dimensions D = 0, 1, 2 and 
topological dimension E = 3 published in [4], [5],[6], see Fig. 1. 

 
The maximum position can be determined by 
the derivation of (2) with the time  
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From this equation the thermal diffusivity at 
the maximal time can be determined 
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Fig. 1 Heat flow geometry for Fig. 2 plane-
parallel, b) cylindrical and c) spherical 
coordinates Euclidean space. 

, (4) 
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where fa is a coefficient that characterizes the deformation of the thermal field [6]. This 
coefficient is equal to one for the ideal plane source (E = 3, D = 2). The maximum 
temperature of the response for Dirac thermal pulse is obtained by introducing of the thermal 
diffusivity (4) in the term (2)
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From the ratio of equations (6) and (2) and with the use of the term (4)
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it is possible to definite the coefficient fa (fractal dimension D respectively) for every point of 
the experimental dependence 
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The relations on the left side are used for the temperature increase; the relations on the right 
side are used for the temperature decrease. The value of the coefficient fa could be also 
affected by the geometry of sample [6] or by the finite pulse width, too [7]. 
From term (5) it is obtained the thermal capacity 
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and thermal conductivity of the studied fractal structure 
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where fa and fc are the coefficients that characterize the deformation of the thermal field [6]. 
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Fig. 4 Time dependency of the slope 
temperature response for the Dirac thermal pulse 
(for the heat flow geometry from  
calculated by Eq. . 

Fig. 2
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Fig. 3 Time dependency of the temperature 
response for the Dirac thermal pulse (for the heat 
flow geometry from  calculated by Eq. . Fig. 1 (2)

 
The Fig. 2 represents time-temperature dependencies (according equation (2)) calculated for 
spherical (D = 0), cylindrical (D = 1), planar (D = 2), and cubic (D = 3) geometry of the heat 
source (see Fig. 1). It is evident from the Fig. 2 and from the equation (3) that for D = E the 
function meets maximum for the time ∞→t .  
All dependences for the long time intervals converge to the asymptote, which is longitudinal 
with the time scale. The intersection of this asymptote with the vertical scale determines the 
coefficient  and thus the fractal dimension )( DEfa −= D that characterizes the specimen set-
up (heat source, specimen, distribution of the temperature field, heat losses). When the value 
fa is known it is feasible to determine the parameters of the studied thermal system with the 
aid of the (4) − (9) equations. 
 
3 Experimental 
 
The Thermophysical Transient Tester 1.02 was used for measuring of the responses to the 
pulse heat. It was developed at the Institute of Physics, Slovak Academy of Science [7]. The 
order of the experiment is described in [1]. 
Thermal responses from Slovak Academy were used for the data evaluation. The measured 
sample was round shaped with diameter R = 0,03 m. Its density was ρ = 77,9 kg.m–3 for its 
thickness h = 0,0075 mm, the thermal conductivity was λ = 0,0254 W.m–2.K–1. 
 

 
Fig. 5 Current flow geometry: Fig. 6 plane-parallel, Fig. 7 fractal, Fig. 8 point (for 
different ratio of length contact respectively) source. 
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In Fig. 4 three possible configurations of experiment arrangements are shown. In Fig. 4a the 
diameter of specimen is equal to the diameter of a heat source, in Fig. 4c diameter of a heat 
source is far smaller than specimen’s diameter. Fig. 4b shows the real situation, when the heat 
is delivered irregularly (either from the source of finite size (capacity) or from a source with 
specific composition of heat sources – e.g. hot-disc). 
 
4 Results 
 
The Fig. 5 represents the typical time responses of temperature for the step wise of input 
power. The coefficient fa (fractal dimension D respectively) of the fractal heat source for 
every point of the experimental dependence (measured temperature depended on time) was 
calculated using the Eq. (7). The fractal heat source characterizes the distribution of the 
temperature in the specimen in specific time. From the Fig. 6 it is evident that for very short 
time there is the value of the fractal dimension D ≈ 2 and therefore, the plane heat source is 
formed. The value of the fractal dimension decreases with increasing time value since the heat 
disperses into the space. From the time τ1 ≈ 16 s (the intersection of tangents of the curves) 
the fractal dimension is getting settled to the value D ≈ 0,15. The spatial distribution of the 
temperature in the sample does not change yet in this area. It is possible to determine the 
coefficient of the heat source fa0 = 1 and the diffusivity of the specimen  
from the extrapolated value of the fractal dimension to the time 

127 sm10679.4 −−⋅≈a
t = 0 s. This value is identical 

to value determined by the Institute of Physic, Slovak Academy of Sciences, Bratislava. 
The deviations between the experimental (the black curve) and the model (the red curve) 
response obvious in the descending part of the characteristics are caused by the heat dissi-
pation from the material via the cylinder surface of the specimen. This causes a faster 
decrease of the temperature than the theory predicted. The course of the temperature deviation 
between the model and experimental characteristic is illustrated as the blue curve in the Fig. 5. 
Negative values of functional dependence show the heat dissipations from the specimen. This 
deviation has also its own extreme (minimum), which means that for the value of time 

 heat losses are rising and for longer time intervals heat loses are smaller. s250m <t
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Fig. 9 Thermal response of the sample measured by the pulse 
transient method (black – experimental data, red – model data, 
blue – difference between experimental and model data). 
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From the descending characteristic we can again determine, by using (7) for each point of 
experimental dependence of measured temperature on time, coefficient fa, fractal dimension D 
of the fractal source “of cold” presented by specimen surface. From Fig. 6b it is evident that 
there are not any cold spots over the surface of specimen for time intervals close to the 
maximum (the fractal dimension of heat spots is equal to the topological dimension D ≈ 3. 
With rising time the value of fractal dimension of decreasing temperature is smaller again 
until the value D ≈ 2. This is a fractal dimension of the specimen surface. The time constant 
of this descent is τ2 ≈ 86 s. From the proportion of time constants (expecting that diffusivity 
of the material does not change) we can presume the distance between the source of heat 
dissipation and the thermocouple m017.012 ≈= ττhx . This value approximately responds 
to the specimens’ radius. 
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Fig. 10 Fractal dimension of the heat distribution in the specimen from Fig. 11 increased and from    
Fig. 12 decreased part of characteristics. 

5 Conclusion 
 
In this article, the results of thermal responses to the pulse of supplied heat evaluations are 
discussed. To interpret the outcomes, the simplified heat conductivity model is used [1]. The 
model is based on expectations published in [4]. Results show the image of heat distribution 
in the specimen, in various time intervals after the heat supply from the source. These 
evaluations could be used for more accurate determination of the thermal parameters of 
studied matters. 
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