LINEAR THERMAL EXPANSION OF THE SPHERICAL MODEL OF THE TWO-PHASE MATERIAL

Štefan Valovič - Igor Štubňa

Department of Physics, Constantine the Philosopher University, A. Hlinku 1, 94901 Nitra, svalovic@ukf.sk, istubna@ukf.sk

Abstract

The structure of the two-phase material can be considered as two concentric spheres. The inner sphere, the grain and the outer sphere, the cladding, have radii R_{g}, R_{c} and there material parameters are E_{g}, E_{c} (Young's modulus), μ_{g}, μ_{c} (Poisson's ratios) and α_{g}, α_{c} (coefficients of the linear thermal expansion). The expansion of such model during its heating can be solved as a thermoelasticity problem. We derived the coefficient of linear thermal expansion of the two phase material in the case when $E_{g} \neq E_{c}, \mu_{g} \neq \mu_{c}$ and $\alpha_{g} \neq \alpha_{c}$.

Key words: thermal expansion, two-phase material

1 Introduction

Some materials can be considered two-phase solids. For example, sintered quartz electrical porcelain contains quartz grains in glassy matrix [1]. We can visualize this structure as consisting of two concentric spheres. The inner sphere, the grain, has a radius R_{g}, and its material parameters are E_{g} (Young's modulus), μ_{g} (Poisson's ratio) and α_{g} (coefficient of the linear thermal expansion). The outer sphere, the cladding, has material constants E_{c}, μ_{c} and α_{c} and its radius is R_{c}. We can solve the expansion of this model during its heating as a thermoelasticity problem. If the temperature increase is small and inertial forces are negligible, then the temperature field and the stress field do not influence each other. We assume that grain and cladding materials are homogeneous and isotropic, which means that a radial thermal flow occurs. We also assume that the material parameters are constant in the considered temperature region.

The general formula for the coefficient of linear thermal expansion, given the above assumptions, is derived in this contribution.

2 Mathematical model

It follows from the assumptions described above, that the displacement vector \vec{u} has only a radial component u_{r}. Deformations in a simple sphere along the spherical coordinates are [2]
$\varepsilon_{r}=\frac{\partial u_{r}}{\partial r}, \quad \varepsilon_{\vartheta}=\frac{1}{r} u_{r}, \quad \varepsilon_{\varphi}=0$
and shear deformation is
$\varepsilon_{r \vartheta}=\frac{1}{2 r} \frac{\partial u_{r}}{\partial \vartheta}=0$,
because the radial displacement u_{r} does not change along the tangential direction. One can see that deformations are only in the radial and tangential directions. We can use these results for a simple sphere [2]. The radial stress in the grain is
$\sigma_{r g}(r)=\frac{E_{g} c_{g 1}}{1-2 \mu_{g}}-\frac{2 E_{g} c_{g 2}}{1+\mu_{g}} \frac{1}{r^{3}}-\frac{2 E_{g}}{1-\mu_{g}} \frac{1}{r^{3}} \int_{0}^{r} \varepsilon_{g f} r^{2} d r$, for $0<r \leq R_{g}$,
and tangential stress is
$\sigma_{g g}(r)=\frac{E_{g} c_{g 1}}{1-2 \mu_{g}}-\frac{E_{g} c_{g 2}}{1+\mu_{g}} \frac{1}{r^{3}}-\frac{E_{g} \varepsilon_{g f}}{1-\mu_{g}}+\frac{E_{g}}{1-\mu_{g}} \frac{1}{r^{3}} \int_{0}^{r} \varepsilon_{g f} r^{2} d r, \quad$ for $0<r \leq R_{g}$,
and radial component of the displacement vector is
$u_{r g}(r)=c_{g 1} r+c_{g 2} \frac{1}{r^{2}}+\frac{1+\mu_{g}}{1-\mu_{g}} \frac{1}{r^{2}} \int_{0}^{r} \varepsilon_{g f} r^{2} d r$, for $0<r \leq R_{g}$.
The value $\varepsilon_{g f}$ is a free deformation during the temperature change. This deformation can be calculated using the equation
$\varepsilon_{g f}=\int_{t_{0}}^{t} \alpha_{g} d t$,
thus integral in Eqs. (1), (2), (3) can be written as
$\int_{0}^{r} \int_{t_{0}}^{t} \alpha_{g} r^{2} d r d t=\alpha_{g} \Delta t \frac{r^{3}}{3}$,
where $\Delta t=t-t_{0}$ is a temperature difference between initial temperature t_{0} and actual temperature t.

For the cladding we have

$$
\begin{align*}
& \sigma_{r c}(r)=\frac{E_{c} c_{c 1}}{1-2 \mu_{c}}-\frac{2 E_{c} c_{c 2}}{1+\mu_{c}} \frac{1}{r^{3}}-\frac{2 E_{c}}{1-\mu_{c}} \frac{1}{r^{3}} \int_{R_{g}}^{r} \varepsilon_{c f} r^{2} d r, \text { for } R_{g}<r \leq R_{c}, \tag{4}\\
& \sigma_{g_{c}}(r)=\frac{E_{c} c_{c 1}}{1-2 \mu_{c}}-\frac{E_{c} c_{c 2}}{1+\mu_{c}} \frac{1}{r^{3}}-\frac{E_{c} \varepsilon_{c f}}{1-\mu_{c}}+\frac{E_{c}}{1-\mu_{c}} \frac{1}{r^{3}} \int_{R_{g}}^{r} \varepsilon_{c f} r^{2} d r, \text { for } R_{g}<r \leq R_{c}, \tag{5}\\
& u_{r c}(r)=c_{c 1} r+c_{c 2} \frac{1}{r^{2}}+\frac{1+\mu_{c}}{1-\mu_{c}} \frac{1}{r^{2}} \int_{R_{c}}^{r} \varepsilon_{c f} r^{2} d r, \text { for } R_{g}<r \leq R_{c}, \tag{6}
\end{align*}
$$

and the integral in Eqs. (4), (5), (6) is
$\int_{R_{g} t_{0}}^{r} \int_{c}^{t} \alpha_{c} r^{2} d r d t=\alpha_{c} \Delta t \frac{r^{3}-R_{g}^{3}}{3}$.
Constants $c_{g 1}, c_{g 2}, c_{c 1}, c_{c 2}$ can be calculated from the boundary conditions. The boundary conditions on the surface between the grain and cladding $\left(r=R_{g}\right)$ and on the surface of the cladding $\left(r=R_{c}\right)$ are [3]
$u_{r g}(0)=0, \quad u_{r g}\left(R_{g}\right)=u_{r c}\left(R_{g}\right), \quad \sigma_{r g}\left(R_{g}\right)=\sigma_{r c}\left(R_{g}\right), \quad \sigma_{r c}\left(R_{c}\right)=0$.
Substituting Eqs. (1), (3), (4) and (6) into the boundary conditions (7) we obtain four equations
$\lim _{r \rightarrow 0}\left[c_{g 1} r+c_{g 2} \frac{1}{r^{2}}+\frac{D_{g}}{B_{g}} \frac{1}{r^{2}} \frac{\alpha_{g} \Delta t}{3} r^{3}\right]=0$,
$c_{g 1} R_{g}+\frac{D_{g} R_{g}}{B_{g}} \frac{\alpha_{g} \Delta t}{3}=c_{c 1} R_{g}+\frac{c_{c 2}}{R_{g}^{2}}$,
$A_{g} c_{g 1}-2 D_{g} \frac{\alpha_{g} \Delta t}{3}=A_{c} c_{c 1}-\frac{2 B_{c}}{R_{g}^{3}} c_{c 2}$,
$A_{c} c_{c 1}-\frac{2 B_{c}}{R_{c}^{3}} c_{c 2}-\frac{R_{c}^{3}-R_{g}^{3}}{R_{c}^{3}} \frac{\alpha_{c} \Delta t}{3} 2 D_{c}=0$,
where we introduced abbreviated designations
$A_{g}=\frac{E_{g}}{1-2 \mu_{g}}, \quad A_{c}=\frac{E_{c}}{1-2 \mu_{c}}, B_{g}=\frac{E_{g}}{1+\mu_{g}}, \quad B_{c}=\frac{E_{c}}{1+\mu_{c}}, D_{g}=\frac{E_{g}}{1-\mu_{g}}, D_{c}=\frac{E_{c}}{1-\mu_{c}}$.
By solving these equations we obtain the constants $c_{g 1}, c_{g 2}, c_{c 1}, c_{c 2}$:
$c_{g 1}=\frac{\alpha_{g} \Delta t}{3} \frac{D_{g}}{B_{g}}\left(\frac{A_{g}-2 B_{g}}{A_{g}-A_{c}}-1\right)-\frac{c_{c 2}}{R_{g}^{3}}\left(\frac{2 B_{c}+A_{g}}{A_{g}-A_{c}}-1\right)$,
$c_{g 2}=0$,
$c_{c 1}=\frac{\alpha_{g} \Delta t}{3} \frac{D_{g}}{B_{g}}\left(\frac{A_{g}-2 B_{g}}{A_{g}-A_{c}}\right)-\frac{c_{c 2}}{R_{g}^{3}}\left(\frac{2 B_{c}+A_{g}}{A_{g}-A_{c}}\right)$,
$c_{c 2}=\frac{\alpha_{g} \Delta t}{3} \frac{\frac{A_{c}}{2 B_{c}} \frac{D_{g}}{B_{g}}\left(\frac{A_{g}-2 B_{g}}{A_{g}-A_{c}}\right) R_{c}{ }^{3}-\frac{D_{c}}{B_{c}}\left(R_{c}{ }^{3}-R_{g}{ }^{3}\right)}{1+\frac{A_{c}}{2 B_{c}}\left(\frac{2 B_{c}+A_{g}}{A_{g}-A_{c}}\right) \frac{R_{c}{ }^{3}}{R_{g}{ }^{3}}}$.
After mathematical modifications and introduction of following quantities
$F=\frac{A_{g}-2 B_{g}}{A_{g}-A_{c}}, G=\frac{2 B_{c}+A_{g}}{A_{g}-A_{c}}, H=\frac{A_{c}}{2 B_{c}}, J_{g}=\frac{D_{g}}{B_{g}}, J_{c}=\frac{D_{c}}{B_{c}}, v=R_{g}^{3} / R_{c}^{3}$,
where v represents the part of grain in the whole model volume, equations (12) - (15) become:
$c_{g 1}=\frac{\alpha_{g} \Delta t}{3}\left[J_{g}(F-1)-(G-1) \frac{H F J_{g}+J_{c}(v-1)}{v+H G}\right]$,
$c_{g 2}=0$,
$c_{c 1}=\frac{\alpha_{g} \Delta t}{3}\left[J_{g} F-G \frac{H F J_{g}+J_{c}(v-1)}{v+H G}\right]$,
$c_{c 2}=\frac{\alpha_{g} \Delta t}{3} \frac{H F J_{g}+J_{c}(v-1)}{v+H G} R_{g}{ }^{3}$.
Let us change now the model described above with a homogeneous sphere made of fictive material with coefficient of the linear thermal expansion α_{f}. The size of this sphere at the temperature t_{0} is the same as the composite sphere, i.e. its radius is R_{c}. Both spheres are equivalent if their radial displacements are equal at the temperature t

$$
\left\{u_{r g}\left(R_{g}\right)+u_{r c}\left(R_{c}\right)\right\}_{\text {comp.sphere }}=\left\{u_{r}\left(R_{c}\right)\right\}_{\text {fict.sphere }},
$$

where $\left\{u_{r}\left(R_{c}\right)\right\}_{\text {fict.sphere }}=R_{c} \alpha_{f} \Delta t$ follows from the equation similar to the Eq. (3) and boundary conditions $u_{r f}(0)=0, \sigma_{r f}\left(R_{c}\right)=0$. Then we obtain
$\alpha_{f}=\left(c_{g 1}+J_{g} \frac{\alpha_{g} \Delta t}{3}\right) \frac{R_{g}}{R_{c} \Delta t}+c_{c 1} \frac{R_{c}}{R_{c} \Delta t}+c_{c 2} \frac{1}{R_{c}{ }^{2} R_{c} \Delta t}+J_{c} \frac{\alpha_{c} \Delta t}{3 R_{c}{ }^{2} R_{c} \Delta t}\left(R_{c}{ }^{3}-R_{g}{ }^{3}\right)$
and after using equations (16) - (19) and after mathematical modifications

$$
\begin{equation*}
\alpha_{f}=\alpha_{g} \frac{1}{3}\left[F J_{g}(\sqrt[3]{v}+1)+\frac{H F J_{g}+J_{c}(v-1)}{v+H G}(v-G-(G-1) \sqrt[3]{v})\right]+\alpha_{c} \frac{1}{3}\left[J_{c}(1-v)\right] . \tag{21}
\end{equation*}
$$

All parameters can be expressed using the base material properties as follows
$F=\frac{E_{g}\left(2 \mu_{c}-1\right)\left(5 \mu_{g}-1\right)}{\left(1+\mu_{g}\right)\left[E_{g}\left(2 \mu_{c}-1\right)+E_{c}\left(1-2 \mu_{g}\right)\right]}, \quad G=\frac{\frac{2 E_{c}}{1+\mu_{c}}+\frac{E_{g}}{1-2 \mu_{g}}}{\frac{E_{c}}{2 \mu_{g}-1}+\frac{E_{g}}{1-2 \mu_{g}}}$,
$H=\frac{1+\mu_{c}}{2-4 \mu_{c}}, J_{g}=\frac{1+\mu_{g}}{1-\mu_{g}}, J_{c}=\frac{1+\mu_{c}}{1-\mu_{c}}$.
Special case when $E_{g} \approx E_{c}, \mu_{g} \approx \mu_{c}$ and $\alpha_{g} \neq \alpha_{c}$ have been studied in our former contribution [4].

3 Conclusions

The structure of the two-phase material can be considered as two concentric spheres model. The expansion of such model during its heating can be solved as a thermoelasticity problem. If the material parameters of the inner sphere and outer sphere are constant in the considered temperature region and if their Young's moduli and Poisson's ratios are different, then the coefficient of the linear thermal expansion α_{f} of the two-phase material can be calculated using the equation (21).

Acknowledgement

This work was supported by the Slovak Agency for Science under project VEGA 1/0279/03 and VEGA 1/9415/02.

References

[1] Norton, F. H.: Fine Ceramics - Technology and Applications. McGraw-Hill Co., New York 1970
[2] Timoshenko, S. P. - Goodier, J. N.: Theory of Elasticity. McGraw-Hill Co., New York 1970
[3] Scherer, G. W.: Viscoelastic analysis of thermal stress in a composite sphere. J. Amer. Ceram. Soc., 66, 1983, No.3, 59-65
[4] Štubňa, I. - Valovič, Š.: Linear Thermal Expansion of the Two-phase Ceramics. In: Thermophysics 2003. http://www.tpl.ukf.sk/engl_vers/thermophys/proceedings/03/ Thermophysics2003.htm, 2004, pp. 98-101.

