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Abstract: The structure of the two-phase material can be considered as two concentric 
spheres. The inner sphere, the grain and the outer sphere, the cladding, have radii Rg , Rc and 
there material parameters are Eg , Ec (Young’s modulus), μg , μc (Poisson’s ratios) and αg , αc 
(coefficients of the linear thermal expansion). The expansion of such model during its heating 
can be solved as a thermoelasticity problem. We derived the coefficient of linear thermal ex-
pansion of the two phase material in the case when Eg ≠ Ec, μg  ≠ μc and αg ≠ αc.  
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1 Introduction 
 

Some materials can be considered two-phase solids. For example, sintered quartz elec-
trical porcelain contains quartz grains in glassy matrix [1]. We can visualize this structure as 
consisting of two concentric spheres. The inner sphere, the grain, has a radius Rg , and its ma-
terial parameters are Eg (Young’s modulus), μg (Poisson’s ratio) and αg (coefficient of the 
linear thermal expansion). The outer sphere, the cladding, has material constants Ec , μc and 
αc and its radius is Rc. We can solve the expansion of this model during its heating as 
a thermoelasticity problem. If the temperature increase is small and inertial forces are negligi-
ble, then the temperature field and the stress field do not influence each other. We assume that 
grain and cladding materials are homogeneous and isotropic, which means that a radial ther-
mal flow occurs. We also assume that the material parameters are constant in the considered 
temperature region. 

The general formula for the coefficient of linear thermal expansion, given the above 
assumptions, is derived in this contribution.  

 
 

2 Mathematical model 
 

It follows from the assumptions described above, that the displacement vector u  has only 
a radial component u

r

r. Deformations in a simple sphere along the spherical coordinates are [2] 
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because the radial displacement ur does not change along the tangential direction. One can see 
that deformations are only in the radial and tangential directions. We can use these results for 
a simple sphere [2]. The radial stress in the grain is 
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and tangential stress is 
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and radial component of the displacement vector is 
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The value εgf is a free deformation during the temperature change. This deformation can be 
calculated using the equation 
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thus integral in Eqs. (1), (2), (3) can be written as 
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where  is a temperature difference between initial temperature t0ttt −=Δ 0 and actual tem-
perature t.  
 For the cladding we have 
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and the integral in Eqs. (4), (5), (6) is 
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Constants cg1, cg2, cc1, cc2 can be calculated from the boundary conditions. The bound-
ary conditions on the surface between the grain and cladding (r = Rg) and on the surface of 
the cladding (r = Rc) are [3] 

0)0( =rgu ,    )()( grcgrg RuRu = ,   )()( grcgrg RR σσ = ,   0)( =crc Rσ .    (7) 
Substituting Eqs. (1), (3), (4) and (6) into the boundary conditions (7) we obtain four equa-
tions 
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where we introduced abbreviated designations 
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By solving these equations we obtain the constants cg1, cg2, cc1, cc2 : 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−

+
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−

−Δ
= 1

2
1

2
3 3

2
1

cg

gc

g

c

cg

gg

g

gg
g AA

AB
R
c

AA
BA

B
Dt

c
α

,      (12) 

02 =gc  ,           (13) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

+
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−Δ
=

cg

gc

g

c

cg

gg

g

gg
c AA

AB
R
c

AA
BA

B
Dt

c
22

3 3
2

1

α
,       (14) 

( )

3

3

333

2 2
2

1

2
2

3

g

c

cg

gc

c

c

gc
c

c
c

cg

gg

g

g

c

c

g
c

R
R

AA
AB

B
A

RR
B
DR

AA
BA

B
D

B
A

t
c

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

+
+

−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−

Δ
=
α

.      (15) 

After mathematical modifications and introduction of following quantities 
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where v represents the part of grain in the whole model volume, equations (12) – (15) be-
come: 

⎥
⎦

⎤
⎢
⎣

⎡
+

−+
−−−

Δ
=

HGv
vJHFJ

GFJ
t

c cg
g

g
g

)1(
)1()1(

31

α
,       (16) 

02 =gc  ,           (17) 

⎥
⎦

⎤
⎢
⎣

⎡
+

−+
−

Δ
=

HGv
vJHFJ

GFJ
t

c cg
g

g
c

)1(
31

α
,        (18) 

3
2

)1(
3 g

cgg
c R

HGv
vJHFJt

c
+

−+Δ
=
α

.         (19) 

  
Let us change now the model described above with a homogeneous sphere made of 

fictive material with coefficient of the linear thermal expansion αf. The size of this sphere at 
the temperature t0 is the same as the composite sphere, i.e. its radius is Rc. Both spheres are 
equivalent if their radial displacements are equal at the temperature t 
{ } { } spherefictcrspherecompcrcgrg RuRuRu ..
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where { } tRRu fcspherefictcr Δ= α.)(  follows from the equation similar to the Eq. (3) and bound-

ary conditions urf(0) = 0, 0)( =crf Rσ . Then we obtain 
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and after using equations (16) – (19) and after mathematical modifications 
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All parameters can be expressed using the base material properties as follows 
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Special case when Eg ≈ Ec, μg  ≈ μc and αg ≠ αc have been studied in our former contribu-

tion [4].  
 
 
3 Conclusions 
 

The structure of the two-phase material can be considered as two concentric spheres 
model. The expansion of such model during its heating can be solved as a thermoelasticity 
problem. If the material parameters of the inner sphere and outer sphere are constant in the 
considered temperature region and if their Young’s moduli and Poisson’s ratios are different, 
then the coefficient of the linear thermal expansion αf of the two-phase material can be calcu-
lated using the equation (21).  
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